RL-TR-97-113
Final Technical Report
October 1997

INTEGRATING STOCHASTIC AND
SIMULATION-BASED MODELS INTO C3lI
AUTOMATED PLANNING TASKS

University of Florida

Paul A. Fishwick

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19980209 076

Rome Laboratory
Air Force Materiel Command
Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-97-113 has been reviewed and is approved for publication.

\#{vu Hn /]/ { . a’[ﬁwuu

KAREN M. ALGUIRE
Project Engineer

APPROVED:

FOR THE DIRECTOR: %/ ’c

JOHN A. GRANIERO, Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/C3CA, 525 Brooks Rd, Rome, NY 13441-4505. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704.0188

Public reporting burden for this collection of inform

ation is estimated to average 1 hour per responss, including the time for reviewin

the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information

g instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing

Operations and Reports, 1215 Jafferson Davis Highway, S

uite 1204, Arlington, VA 22202-4302, and to the Office of Managemen

t and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

——
1. AGENCY USE ONLY (Leave blank] 2. REPORT DATE

Oct 97

3. REPORT TYPE AND DATES COVERED
Final Aug 95 - Dec 96

4. TITLE AND SUBTITLE
INTEGRATING STOCHASTIC AND SIMULATION-BASED MODELS INTO

5. FUNDING NUMBERS
C - F30602-95-1-0031

C31 AUTOMATED PLANNING TASKS PE - 62702F
PR - 4600

6. AUTHOR(S) TA - AA
WU- 02

Paul A. Fishwick

8. PERFORMING ORGANIZATION
REPORT NUMBER

| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES]

Dept of Computer & Information Science and Engineering
University of Florida

Bldg. CSE, Room 301, PO Box 116120

Gainesville, FL 32611-6120

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER
Rome Laboratory/C3CA
525 Brooks Road

Rome, NY 13441-4505

RL-TR-97-113

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Karen M. Alguire, C3CA, 315-330-4833

12a. DISTRIBUTION AVAILABILITY STATEMENT 12h. DISTRIBUTION CODE

Approved for public release; distribution unlimited. N/A

13. ABSTRACT (Maximum 200 words)

This project focused on research involving a simulation-based planning methodology and toolkit to help in real-time
planning and decision making. A new methodology called OOPM (Object Oriented Physical Modeling) was
developed. Development of the MOOSE (Multimodeling Object Oriented Simulation Environment) system, based on
the OOPM methodology, has also been underway including modeling windows for finite state automata, differential
equations, and functional models. The object-oriented multimodel framework of MOOSE is composed of three parts
consisting of a graphical user interface, BLOCKS models based on the BLOCKS modeling language, and the SimPack
Toolkit. MOOSE represents a software prototype for constructing simulation-based planning scenarios. The current
scenario involves an interdiction mission. The goal is to achieve the mission goals with the fewest casualties. The best
plan to achieve this goal is determined with a combination of a "qualitative" rule-based model and lower level
"quantitative" block-structured models. The MOOSE architecture permits a model abstraction capability to allow
users to realize time constraints on the simulation-based planning by simulating models at different levels. The use of
an iterative deepening approach to simulation is being investigated.

14. SUBJECT TERMS 15. NUMBER OF PAGES
simulation-based planning, object oriented simulation, multimodeling, physical modeling 180

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT]
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298 (gRev. 2-89) (EG)
Prescribed by ANS| Std. 239.18
Oesigned using Perform Pro, WHS/DIOR, Dct 94

— R S : i

Contents
1 INTRODUCTION
2 ACCOMPLISHMENTS

3 MOOSE
3.0.1 Object-Oriented Multimodel Framework

4 APPENDICES

1/2

1 INTRODUCTION

This is the Final Technical Report prepared under the Contract F'30602-95-1-0031, entitled
“Integrating Stochastic and Simulation-Based Models into C3I Automated Planning Tasks.”
It summarizes progress on this contract for 1996.

The most comprehensive list of online (with full text and graphics) publications can be
found in the PIs web page. Many of these publications acknowledge grant F30602-95-1-0031,
however, we are including only those publications with direct relevance to the grant’s focus
on simulation-based planning.

2 ACCOMPLISHMENTS

Several publications were written in the area of simulation-based planning to disseminate
the results of the funded work:

* Ph.D. dissertation of Dr. Jin Joo Lee (San Jose State University)
¢ Journal article in Simulation, November 1996

e Journal article in IEEE Transactions on Systems, Man and Cybernetics, July 1996,
Vol. 26, No. 4

¢ Journal article submitted to ACM Transactions on Modeling and Computer Simula-
tion, August 1996.

® Magazine article in Phalanx, published by the Military Operations Research Society

We developed a new methodology called OOPM (Object Oriented Physical Modeling) and
published this in a manuscript to ACM Transactions on Modeling and Computer Simulation.
A C++ based system called MOOSE, based on OOPM, is under construction. Modeling
windows are underway for finite state automata, differential equations and functional models.
These are the key model types used in the simulation-based planning work. More information
on MOOSE can be obtained by visiting the web site: http://www.cise.ufl.edu/~fishwick/
moose.html.

We published a paper on model abstraction in the recent Winter Simulation Conference
held in San Diego, CA, December 1996. Our intent is to include model abstraction capability
in MOOSE to allow users to realize time constraints on the simulation-based planning by
simulating models at different levels. We are investigating the use of an iterative deepening
approach to simulation that is similar to that found in the computer gaming literature where
a breadth-first strategy is used. Using this method, highly aggregate models are simulated
and refinement proceeds to more detailed models as time permits.

3 MOOSE

MOOSE (Multimodeling Object Oriented Simulation Environment) represents our software
prototype for constructing simulation-based planning scenarios.

3

[.

3.0.1 Object-Oriented Multimodel Framework
The design framework is complete and is composed of three parts:
1. Graphical User Interface
2. BLOCKS models
3. SimPack
These are defined in more detail below:

1. Graphical User Interface (GUI): The Graphical User Interface allows users to both con-

struct visually- oriented models, as well as view the output from these models in the
2D color scenario window. In many ways, MOOSE will appear similar to commercial
simulation packages, such as SES Workbench, when it is complete. Multi-level, graph-
ical object-oriented model building will be facilitated. The new aspects of MOOSE,
over previously done work, are: (1) support for abstraction and multimodeling; and (2)
support for planning using simulation. The software is also very portable and freely
available to other researchers for further extension. This philosophy is built upon our
previous SimPack software started in 1990. SimPack currently has 170 users world-
wide and is documented in the PIs home page http://www.cis.ufl.edu/~fishwick.
The first aspect, multimodeling, allows users to construct multi-level models where
each level represents an abstraction level for the system being designed or modeled.
Multimodeling affords two types of abstraction: (1) structural and (2) behavioral. The
structural abstraction is a byproduct of the hierarchical design process performed using
the GUI and the use of the BLOCKS language to ensure that all system components
are coupled correctly (interlevel and intralevel). The behavioral abstraction allows a
user to remove lower levels of abstraction through system identification procedures
(using a linear systems and neural network approaches).

We are using the Tk/Tcl toolkit for our GUI development work. Tk/Tcl permits
sophisticated GUIs to be developed on top of BLOCKS and C++. Three Tk/Tcl
Windows are planned. Each window will have control icons (buttons with an icon
instead of text). This means each window can accept input and produce output in
that window.

(a) Window 1 (Ezperiment Window): Specify how many replications to run. Specify
the goal. Stopping criterion and time duration of simulation. Specify both an
analog and digital clock (like X windows) for both real-time and simulated-time.
Terminating or Non-Terminating simulations supported. Specify one of five pos-
sible criteria for optimization. This window controls what is to be done during
execution.

(b) Window 2 (Scenario Window): This represents the output of the simulation.
What object behaviors should be displayed and how should the objects be rep-
resented? There should be a base map and overlay maps. Also, it should be
possible to view graphs of one variable versus another (such as state vs. time).
Graphs could just end up being pop-up windows which come up over the scenario

4

4

window (but which can be moved around). Icons can move around over the maps
(and overlays).

For multiple simulations (see Experiment Window), we can opt to view only the
most recent replication, or possibly watch all of them as they trace out paths over
the map.

(c) Window 3 (Modeling Window): Build and display visual models. All models are
visual with a model component being 1) text, 2) pixmap or 3) vector. The Model
structure is stored in a flat file.

2. BLOCKS Modeling Language The BLOCKS modeling language provides an assembly

language for the different types of models supported in MOOSE. The primary types of
initially supported models are: 1) FSA, 2) functional, 3) Petri net and 4) Equational. In
many ways, the BLOCKS language resembles a modeling language for digital circuits.
All supported model types are translated into BLOCKS models and then simulated
using the SimPack toolkit.

. StimPack Toolkit SimPack is a collection of C++ programs and libraries to support

simulation. Currently, SimPack supports individual model types by allow the user
access to libraries for event scheduling, queuing, and equation solving. Also, we are
adding tools for experimental design and analysis to SimPack, which supports the
simulation-based planning and decision making.

APPENDICES

The following manuscripts are included as appendices.

1. Paul A. Fishwick. “Extending Object Oriented Design for Physical Modeling”. Sub-

mitted to ACM Transactions on Modeling and Computer Simulation, August 1996.

. Yi-Bing Lin and Paul A. Fishwick. “Asynchronous Parallel Discrete Event Simulation”.

IEEE Transactions on Systems, Man and Cybernetics, Volume 26, Number 4, July
1996, pp. 397-412.

. Paul A. Fishwick, Gyooseok Kim and Jin Joo Lee. “Improved Decision Making through

Simulation Based Planning” Simulation, November 1996.

. Jin Joo Lee. “A Simulation-Based Approach for Decision Making and Route Planning”

Ph.D. Dissertation, July 1996.

SUBMISSION FOR SPECIAL ISSUE ON MODEL SPECIFICATION &
REPRESENTATION
FOR ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION

Extending Object-Oriented Design for Physical Modeling

Paul A. Fishwick
Dept. of Computer & Information Science and Engineering
University of Florida
Bldg. CSE, Room 301
Gainesville, FL 32611
E-mail: fishwick@cise.ufl.edu
Phone ard FAX: {352) 392-1414
WWW: http://www.cise.ufl.edu/~fishwick

July 12, 1996

Al

Extending Object-Oriented Design for Physical Modeling

Paul A. Fishwick

Dept. of Computer & Information Science and Engineering
University of Florida
Bldg. CSE, Room 301
Gainesville, FL 32611

October 10, 1996

Abstract

When we build simulation models and construct dynamical models for physical systems,
we often do not do so using a clear overall framework that organizes our geometry, dy-
namics and models. How do geometry and dynamics intertwine to effect system change
over multiple abstraction levels? We present a methodology, called object-oriented physical
modeling (OOPM), which builds on the currently accepted computer science approach in
object-oriented program design. This type of modeling injects a way of incorporating geom-
etry and dynamics into general object-oriented design. Moreover, we present an approach
to dynamical modeling that mirrors major categories of computer programming languages,
thereby achieving a definition of system modeling that reinforces the relation of model to
program.

1 Introduction

Simulation is divided into three areas: 1) model design, 2) model ezecution, and 3) ezecution
analysis shown in Fig. 1. Modeling is the process of abstracting real world behavior into a
more economical form for purposes of experimentation and learning. Our chief interest is in
efficiently capturing and organizing the knowledge necessary to simulate physical systems,
both artificial and natural. Simulation requires that we have a way of designing and execut-
ing models. Models can represent geometric shapes of real objects or the dynamics of those
objects. The shape of an object is captured by its geometry, which is used by computer
graphics to display the object. The dynamics of an object allows us to view a computer ani-
mation of the object undergoing time-dependent change. Our purpose is to specify a method
for modeling a physical system, while claiming that our method provides benefits such as
model and model component re-use. We provide a way of organizing physical knowledge and
a methodology for those wanting to model systems at many levels of detail. Our techniques
build on top of object-oriented design principles espoused in both computer science as well as
computer simulation. The method surfaces the importance of an integrated object-process
method where both objects and processes are made visible in model design. We present

A2

Constraint Models
Spatial Models
Multimodels

Input-Output Analysis
E . Experimental Design
Serial Algorithms Model xecution Response Surfiace Technigues
’ : . H Visualization of Data
Paralle]l Algorithms Execution Analysis Verifiodtion
Validation

Figure 1: The study of computer simulation: three subfields.

Conceptual Models
Declarative Models
Model Functional Models

a uniform method that extends previous work by specifying how shape and dynamics are
integrated in the same framework, and by defining methods for modeling that permit an
integration of existing modeling methods without recommending an all-encompassing new
modeling technique. In this sense, the contribution is one where we devise a specific model
integration approach.

The problems facing most model integration situations are analogous to the carpenter,
plumber, and electrician constructing a house. Each has separately created a working net-
work: the carpenter has built the frame, the electrician has soldered wires and boxes for a
completely wired house circuit, and the plumber has assembled the plumbing and heating.
No blueprint has been used to guide each of the three, and so arguments arise and fast but
inelegant fixes are made just to “make it all work.” The three work in isolation in performing
their functions. The absurdity of this situation is clear. Without a blueprint to serve as a de-
sign of house integration, the house cannot be constructed. To model the large-scale systems
properly, many models must be written and assembled. We must find a way for the people
to communicate by specifing their models using a common framework. After-the-fact glue
and paste methods may be necessary initially, but a knowledge representation and design
framework must be created. Only then, should computer code be written to execute the
models.

In Sec. 2, we discuss our motivation for this work as well as a literature search, specifying
what groups have performed similar studies to our own. We introduce a generic example
scenario, in Sec. 3, of a robot moving over a space. This example will be used throughout
the paper as a common thread. Then, in Sec. 4, we define our concepts as well as object-
oriented design as it is practiced in software engineering and simulation. Since modeling
is a process, we present the model design aspects for model engineering, which defines how
models are created from first principles and a knowledge of the system to be modeled.
Sec. 4 supplies the phases needed in engineering the model. Sec. 5 discusses the construction
of the conceptual model. The conceptual model provides a kind of skeletal structure or
scaffolding which requires attributes and methods to make it complete. Sec. 6 describes the
modeling approach for satisfying this completion. There are two types of models: static
models (Sec. 6.1) and dynamic models (Sec. 6.2). In Secs. 7 and 8, we close the article with

A3

a description of our current implementation of this model engineering approach, MOOSE,
and then summarize what we’ve learned and our future directions.

2 Motivation and Background

The word model is a somewhat overloaded term and can have many meanings depending
on context. We proceed to define what we mean by the word model. Models are devices
used by scientists and engineers to communicate with one another using a concise—often
visual—representation of a physical system. Models are visual high-level constructs that we
use to communicate system dynamics without the need for frequent communication of low-
level formalism, semantics and computer code. In our methodology [13], a model is defined
as one of the following: 1) a graph consisting of nodes, arcs and labels, 2) a set of rules, or
3) a set of equations. Computer code and programs are not considered to be models since
code semantics are specified at too low a level. Likewise, formal methods [36, 56] associate
the formal semantics with models but do not focus on representing the kind of high-level
form needed for modeling. One of our thrusts in this paper is to discourage readers from
thinking that to simulate, they need to choose a programming language and then proceed
directly to the coding phase. Even the phrase “object-oriented” is often defined as being
synonymous with certain programming languages such as C++, and so one may be lead
to begin programming, using polymorphism, virtual base classes and other artifacts, before
the design is specified. Without the proper scaffolding for our models, in the form of a
conceptual model, we will produce disorganized pieces of code without a good understanding
and organization of the physical process we wish to study. The act of coding in an object-
oriented language is not a substitute for doing good design. As an example, C++ provides
many object oriented capabilities, but does not enforce object oriented design. Norman [35]
points out the need for good visual, conceptual models in general design for improved user-
interfaces to physical instruments and devices. The importance of design extends to all
scientific endeavors with a focus on models. Models need to provide a map between the
physical world and what we wish to design and subsequently implement either as a program
or a physical construction.

Programs and formal specifications [54, 56, 39] are a vital ingredient in the simulation
process since, without these methods, modeling approaches lack precision and cohesion.
However, formal specifications should not take the place of models since they serve two dif-
ferent purposes. Specifications are needed to disambiguate the semantics, at the lowest level,
of what one is modeling. Models exist to allow humans to communicate about the dynamics
and geometry of real world objects. Our definition of modeling is described at a level where
models are translated into executable programs and formal specifications. Fishwick and
Zeigler [16] demonstrated this translation using the DEVS [56] formalism for one particular
type of visual multimodel (finite state machine model controlling a set of constraint models).
For other types of multimodels, one can devise additional formalisms [39]. Object-oriented
methodology in simulation has a long history, as with the introduction of the Simula lan-
guage [3], which can be considered one of the pioneering ways in which simulation applied
itself to “object-oriented thinking.” Simula provided many of the basic primitives for class
construction and object oriented principles but was not accompanied by a visually-oriented
engineering approach to model building that is found in more recent software engineering

A4

texts [45, 5, 18]. As we shall see in model design, the visual orientation is critical since
it represents the way most scientists and engineers reason about physical problems and,
therefore, must be made ezplicit in modeling. Other more recent simulation thrusts in the
object-oriented arena include SCS conferences [41] as well as numerous Winter Simulation
Conference sessions over the past ten years. Also, various simulation groups have adopted
the general object-oriented perspective [44, 57, 22, 1].

We specify two contributions: 1) a comprehensive methodology for constructing physical
objects that encapsulate both geometric and dynamical models, and 2) a new taxonomy
for dynamic models. The motivation for the first contribution is that there currently exists
no method that uses object-oriented design and specifies an enhancement of this design to
accommodate static and dynamic models. We have taken the existing visual object-oriented
design approaches reflected in texts such as Rumbaugh [45] and Booch [4] and extended these
approaches. Regarding the motivation for deriving a new method for dynamic modeling, we
offer the following reasons:

1. Object-Oriented Design: The new taxonomy is one based on object-oriented design
methodology since it is developed as an extension to object-oriented design. Existing
object-oriented design for software engineering does not include the concept of model-
ing. Our design extends the design approaches in software engineering to employ both
static and dynamic models for physical objects. Furthermore, we include both static
and dynamic models, which capture an integrated physical system with geometry and
dynamics.

2. Orientation: Even though we describe our method as “object-oriented,” the method
places equal value on processes and objects. A process is surfaced through the use of
dynamic models (ref. Sec. 6.2), which are stored as method of objects. The problem
with traditional object-oriented design is that it tends to bury the process as code
while surfacing objects through visually oriented class hierarchies and object relations.
It is necessary to bring out both the concepts of process and object by interweaving
them: objects contain visual models which, in turn, refer to other objects’ attributes
and methods, in a chain-like fashion. So, while the approach we advocate is object-
oriented in the sense that we organize all our knowledge by developing classes and
objects first, process has equal footing in the form of visually defined dynamic models.

3. Completeness: The new taxonomy organizes models from several different areas in-
cluding continuous, discrete and combined models under one umbrella. The traditional
modeling taxonomies are currently separate. For example, models that require a con-
tinuous time slicing type of model execution, are grouped into a model category based
on the need for time slicing, not the form of the model. We focus, instead, on visual
model structure as a basis for model design organization.

4. Multimodels: There does not exist a good modeling approach to multi-level models
where levels are defined using heterogeneous model types. The new taxonomy addresses
this problem through the multimodel concept.

5. Design versus Ezecution: A taxonomy for modeling should be based on the design of a
model and not how it is executed. The current taxonomy introduces some ambiguity as

A5

to whether design or execution is being used to categorize models. The new taxonomy
is one which stresses model form as graphical structure where possible.

6. Dynamic Models versus Programs: We draw a clear parallel between the new taxon-
omy for dynamic models and programming language categories in computer science.
The ability to use the same categories (for modeling as well as for programming)
lends credibility to the new taxonomy, and allows one to draw direct parallels between
programming language and model design constructs without inventing new modeling
category types.

While there has been significant coverage in the simulation literature for analysis meth-
ods [2, 25], the general area of modeling for simulation has lacked uniformity and in-depth
coverage. Two areas of modeling termed “discrete event” and “continuous” are defined in the
simulation literature. For discrete event models, the field is sub-divided into event-oriented,
process and activity-based modeling. To choose one of these sub-categories, we might ask
“What is an event-oriented model?” There is no clear definition [2, 25] other than to state
that a discrete event model is one where discrete events predominate. There is no attempt to
further categorize or classify the form taken on by an event-oriented model. In mentioning
form, we need to address the differences between syntax (form) and semantics (execution). A
program or model may be of a particular form; however, the semantics of this form may have
a variety of possibilities. A Petri net [38] has a particular form regardless of the way in which
it is executed. Ideally, then, we would like to create a model category that classifies the form
of the Petri net, apart from its potential execution characteristics. By associating integer de-
lay time with Petri net transitions, one can execute the Petri net using time slicing, discrete
event simulation or parallel and distributed simulation. By providing an “event-oriented”
model category, it is not clear whether this includes only those models which have explicitly
surfaced “events” in their forms (as in event graphs [48] or animation scripts [13]) or whether
a GPSS or Simscript program [34] could be considered an event-oriented model. Our ap-
proach is to clearly separate model design (syntax) from execution (semantics). Moreover,
as stated earlier, programs are not considered to be models at least for most textually-based
programming languages. One can attach semantics to syntax, but they remain orthogonal
concepts.

Some model types that are similar in form are unfortunately separated into different
categories using the traditional terminology. An example of this can be found in block
models for automatic control and queuing networks. A functional block model and a queuing
network model are identical in form, the only differences being in the semantics for the blocks
(i.e., transfer functions) and the nature of the signal flowing through the blocks (discrete or
continuous). Our taxonomy stresses a difference in model topology and structure instead of
separating model types based on time advance or signal processing features. By using the
concept of functional model, we characterize the syntactical form of the model: functional
models are identified by a uni-directional flow through a network of nodes through directed
arcs. In this fashion, control networks and queuing networks are of the same model type.
Likewise, this flow is directly analogous to functional composition in functional programming
languages.

A6

1,1

end effector sensor
1 8
i \ n Oower arm
joint
upper arm
foundation
8
front back
wheels wheels

S r

Figure 2: Scenario for generic object behavior.

3 Scenario

A general scenario should be defined so we can develop the concepts of physically-based
object-oriented design. We will create a simple example and then provide a table that
illustrates how this example can be seen for a wide variety of disciplines. The reason for
this choice of scenario is that it captures the essence of physical modeling: the application
of dynamics and geometry using particles and fields. Even in the domain of sub-atomic
particles, the object orientation is relevant since particles and fields integrate to form objects
via Schroedinger’s wave equation. The robot serves the role of a particle and the space (or
landscape) serves the role of space. Together, they provide for a comprehensive model.
Consider a 2D space s that is partitioned using either a quadtree or array (ref. Sec 6.1). A
set of mobile robots move around s, undergoing change, as well as changing attributes of
s. Fig. 2 illustrates s and a sample robot r. In the remainder of the paper, we will refer
to Fig. 2 using classes, objects, attributes and methods defined in Sec. 4. A robot or set of
robots move around space s, some staying within the confines of a particular partition of s,
such as s, ; for 4,5 € {1,...,8}. Moreover, certain attributes of s may change. For example,
there may be water in s or a particular density of matter assigned to s. Our robots will
be unusual in that they are capable of changing shape over time if the dynamics demand
this of them. Before we embark on a discussion of object-oriented physical design for robots
within spaces, we present Table 1 to illustrate how, through mappings from one discipline
to another, different areas fit into this general scenario scheme.

4 Model Engineering

Our basis for physical modeling begins with object-oriented design concepts as described in
textbooks [5, 45] as well as object-oriented modeling as applied specifically for simulation of
discrete event systems [57]. Model engineering is the process of building static and dynamic
models for a physical scenario using our extended object-oriented framework. The steps we
take in this procedure are shown in Fig. 3.

Al

Table 1: A sample set of applications using a particle-field metaphor.

| Application | Particle | Field |
Cybernetics robot space
(intelligent agents) (room,factory floor,
terrain)

Military plane, squadron air space
(Air Force)
Ecology individuals, species | landscape
Materials particles,molecules | fluid

' (air, liquid)
Computer chip, module N/A
Engineering
Quantum wave function wave function
Mechanics
Meteorology hurricane, tornado | atmosphere

(finite volumes)

Phase 1 Phase 2 Phase 3

iConceptual Modeling; i —l’fn)?s;c_alf l_/I(_)d_efir;g~) _: " Programming |

' f) | | |

. 1. Identify Classes and ! 11. Specify Static Model \ 11. Specify Variables X

hysical ' S . Specify Static Models . Specify Va

gcgnar?o : Relations) : :
1 2. Identify Atributes and 12. Specify Dynamic Models | 12. Specify Code :

1 Methods | N | | |

’ 1

Figure 3: Model engineering.

5 Conceptual Modeling

The first phase is constructing a conceptual model of the physical scenario. To build such a
model, we must construct a class graph with relations among the classes. Furthermore, we
must identify attributes and methods in those classes. A class is a type. Our treatment of
a class is as if it served as a “cookie cutter.” A cookie cutter (class) operates over a sheet
of dough to create cookies (objects). We might create several types of robots: Walking,
Rotating, Fixed-base. Each of these are classes and they are sub-classes of robot since all of
them are types of robots. This particular relation is called generalization. Another kind of
useful relation is called aggregation since it involves a relation among classes where there is a
“part of” relationship. For example, a particular robot may be composed of (or aggregated
from) wheels, an arm and a camera. The base, arm and camera are part of the robot: the
robot is an aggregate of the base, arm and camera. Fig. 4 shows how we illustrate both of
these relations: generalization with a circle and aggregation with a square. We also permit
an analyst to specify any given relation as both aggregation and generalization. This is
delineated with a circle inside a square. The C specified in Fig. 4 can specify cardinality for

A8

Class

Attributes
l { ’ lCl lCZ ’CS ,Cl |C2 ’C3
Methods Generalization Aggregation Dual Relationship
Hierarchy Hierarchy Hierarchy
Note:

Ci = cardinality constraint such as "=4" or "<2"

Figure 4: Structure of a class with three relations.

a class. In general, without such a specification, it is assumed that a class can be composed
of any number of objects of the sub-class. However, let’s say that we create a class Room
which will always have four walls, then we can specify = 4 on the aggregation relation arc to
illustrate this constraint. Without this explicit constraint, a Room can be composed of any
number of walls. This approach is consistent with several existing OO approaches [45, 22]
to aggregation specification.

While we are on the subject of classes, we define an object to be an instance of a class.
A particular wheel is an instance of the class called Wheel. A class is a set of objects, which
are related through the class definition. A class is composed of its name, a set of attributes
and a set of methods. Aggregation among classes requires some clarification. If The set of
Wheels for a robot is aggregation from the classes FrontW and BackW, there may be any
number of front wheels and any number of back wheels. The aggregation just shows the class
aggregation and not the object aggregation. The specific number of wheels is something that
is changed as we create instances of the two classes. An actual object called wheels can be
created from class Wheels and then we can create two objects from FrontW and two from
BackW. We can even create a containment model (or data structure) which we locate as an
attribute value within wheels that shows the composition of this particular wheels object.

A key part of conceptual modeling is identifying the classes. For the most part, this
procedure is ill-defined but some rules and approaches do exist [13, 18] to help in the model
engineering process. Natural language provides one basis on which to base choices for classes,
attributes and methods. The following are heuristics to aid in the creation of the conceptual
model from a textual description of a physical scenario:

e Make nouns classes or instances of a class.

e Use adjectives to make class attributes, sub-classes or instances.
e Make transitive verbs methods which respond to inputs.

e Use intransitive verbs to specify attributes.

In the physical sciences and engineering, we use models to describe the shape of objects
as well as their behavior. We call the combination of attributes and methods structure. The
two types of relations among classes, generalization and aggregation, are very popular and
are frequently used in object-oriented design. The reason for their utility and popularity is
that they involve the implicit act of passing structure from one class to another. Structure

A9

passing is powerful and enables us to fragment the world into classes, while designing common
structure through aggregation and generalization relations.

The passing of structure for generalization is top to bottom, of a hierarchy of classes
related via generalization, and is frequently known as inheritance. Let’s consider an orange.
An Orange class inherits certain attributes and methods (i.e., structure) from the Fruit class
since an orange is a kind of fruit. A walking robot is a type of general robot, and so inherits
structure from the general robot. The uppermost classes in a generalization hierarchy are
base classes and the child classes are derived classes from the particular base class.

We have discussed generalization and its associated structure-passing inheritance capa-
bility, but there is another key kind of relation: aggregation. Aggregation enjoys the benefit
of structure passing also, but the structure passing in aggregation is bottom-up instead of
top-down. A class that is an aggregation of classes underneath it captures the structure of
all of its children. A robot contains all attributes and methods associated with each of its
sub-components, such as links, cameras and the behaviors of those sub-components. As we
use inheritance for generalization, we will use composition for aggregation. Structure passing
is done, therefore, through inheritance and composition. For our discussion of generalization
and aggregation, we assume that structure passing is a logical operation; however, it may not
be directly implemented in a specific programming language or implementation. For exam-
ple, a large 10° square cell space is an aggregate of 10° individual cells; an implementation
may choose not to cause the explicit passing of structure from children (i.e., cell) to parent
(ie., space), nevertheless, the structure passing is a logical consequence of aggregation, and
is logically present in our design, if not in our implementation.

Inheritance and composition are further defined as follows:

e Inheritance (or generalization) is the relational property of a generalization hierarchy.
Composition (or aggregation) is the relational property of an aggregation hierarchy.

e To differentiate between layers in a hierarchy we use the terms “child” and “parent.” A
parent is always above a child regardless of the relation type. Therefore a child class in
generalization inherits from its parent, but a parent class aggregates from its children.

e The words “derived” and “base” are relative to the type of relation. Base classes in
a generalization tree are at the top with lower-level classes deriving structure. For
aggregation, it is the opposite, with the base classes being at the leaves of the tree.
Structure passing for both relations is derived from “base” to “derived” classes.

e The only classes that can be used for constructing objects are the leaf classes of a
generalization hierarchy. Internal tree nodes are used to hold class structure but are
not used for object construction.

e Inheritance occurs when a derived leaf class in a generalization class hierarchy is used
to construct or create an object. The object “inherits” all attributes and methods from
its parent (or parents in multiple inheritance).

e Composition occurs when any class in an aggregation class hierarchy is used to con-
struct or create an object. The object passes all structure assigned to it upward to the

AlO

| | |

Agent leed Space
/J\ Object Ej
Human Robot Animal Rect Hex

Sensor

| i
Fixed Mobile | ower Higher

Robot Robot Trophic Trophic Sonar

[=1 =1
Arm Base

Camera
=1
Wheels
T =
[=]=t =1 =1 & = '/ri'—‘

Joint Upper Lower End Motor Computer FrontW BackW
Arm Arm Effector

Figure 5: Phase 1, Step 1: Identify classes and relations.

parent (or parents) in multiple composition). The derivation of structure moves from
the base classes.

Aggregation and containment are two different, but related concepts. Aggregation involves
composition, which means that a class is composed of sub-classes. A glass of marbles will
contain marbles, but the glass is not composed of marbles and so a Marble class, in an
aggregation sense, is not a sub-class of Glass unless one redefines the meaning of Glass
to encompass not only the physical structure of a glass, but also of everything within the
“scope” or “environment” of the glass.

Generalization and aggregation are the key relations used in building a conceptual model,
but they are not the only types of relations. If our physical scenario was such that all robots
were attached to wooden boards, then one could form a relation arc between the class robot
and the class board. However, there are sometimes better mechanisms for handling such
cases. For the robot and the board, one can form an aggregate class called Robot-env
which aggregates both board and robot classes. Some of these other class relations may or
may not involve structure passing, but generalization and aggregation represent the power
of a transitive stucture-passing relation involving any number of hierarchical levels. In any
event, by allowing arbitrary relations among classes, we generalize conceptual models to have
similar capabilities in representation to that of semantic networks and certain schemata in
databases. That is, one can use logical inference and querying on the conceptual model in
addition to using it only for structure passing. Also, the conceptual model need not be static.
The conceptual model as it is originally defined represents a physical system at an initial
time instant. New classes and relations may be added over time to permit a dynamically
changing physical environment.

Fig. 4 illustrates generalization () and aggregation (O) relations. It is not necessary
to group all relations into one graph or hierarchy—multiple graphs or hierarchies are possi-
ble. Fig. 2 provides us with the base classes for Fig. 5. The downward and upward block

All

arrows in Fig. 5 illustrates the respective directions of structure passing for inheritance and
composition.

Inheritance and aggregation have rules that they use to perform the movement of struc-
ture within a tree. For inheritance, methods and attributes are copied from the tree root to
the tree leaves except for when one overrides an inherited attribute or method. However, we
need to be explicit about our “inheritance rule” since copies can be made, potentially, not
only from the root of the generalization tree, or from the immediate parent of a class, but also
from any class which lay in-between the root and leaf class. An attribute type within class
Agent can be set to “organic”. While the classes Human and Animal automatically inherit
this attribute from Agent, Robot overrides this by setting type to “artificial.” Overriding
method and attributes permits a kind of heterogeneity in the derived classes so that they
need not all be perfect copies of the base class. In addition to overriding, some structure
from the base class may not be available for copying to derived classes. A default inheritance
rule is one where a derived class inherits structure through copying from its parent class.

For aggregation, we have a more complex situation where an aggregation procedure must
be specified for all attributes and methods in the base classes. An example of the need for
such procedures is when two base-class methods or attributes are identical in name. The
aggregation question is framed as “Given a number of base classes, how do we glue the base
class attributes and methods to create attributes and methods in the aggregate class?” There
is a conflict and a resolution method is required. Consider attribute contains in Arm, Base
and Wheels. The contains attribute points to a data structure of what is contained within an
object. Through composition, Arm obtains all three of these contains structures but what
is Arm to do with them since they are all of the same attribute name? A logical aggregation
procedure here is to say that all sub-classes of Arm with a contains attribute are grouped
together into a record or array which is then placed in Arm. However, this sort of aggregation
is not always appropriate. If the sub-classes contain an attribute count which specifies how
many objects there are of this class, then the correct aggregation rule for count within Arm
involves a sum of all count attributes in the sub-classes of Arm. In aggregation, some sort
of “aggregation rule” is always necessary. Implicitly, one could define that attributes of
different names simply agglomerate into aggregate objects in a set-union fashion. However,
there are many instances where this is not so. The count attribute is just one example. Other
examples include aggregation into a matrix or array, and aggregation via model component
“coupling” composing a dynamic model of sub-object methods. Rules can be stored in their
respective classes. We make no attempt to formalize the rule structure—only to state that
some code or rules should be available within a class to handle all aggregations that occur.
A default aggregation rule is one where a derived class aggregates structure through set
unton of the child classes. That is—they just collect structure together without resolving
conflicts, merging structure through summation or integration, or performing concatenation
of structure.

As to how we might refer to populations or groups versus individuals, we consider the
motor example. The set of motors can be called motor which points to a data structure
specifying motor objects, while an individual motor requires an index such as motor/[2].
When an object is created that uses the same root name for an object that already exists,
such as when one created object motor[2] after having created motor, then the a hierarchy is
assumed and aggregation occurs as a result. This mechanism allows one to attach recursive,

Al2

OOFPM

Class Name extension

. ___—1 Variables AN
Attributes——___| N
Static Models =)

— Code

/ ’
h .
Methods =—_|_ Dynamic Models

Figure 6: Structure of a Class.

hierarchical properties to any class in the conceptual model without explicitly specifying
these properties at the time of conceptual model formation. Instead, this sort of multi-level
hierarchy is defined as a static model. An example of this can be seen with the class Rect in
Fig. 5. This class can be used to create a rectangular space hierarchy of any dimension. Let’s
first create a space object called cell by defining Rect cell. If we wish to structure this space
into a quadtree, for instance, we can then create four new objects cell[0], cell[1], cell[2] and
cell[3]. Since we used the same name cell, there is an automatic aggregation relation with
cell composed of cell[0], cell[1], cell[2] and cell[3]. Specifically, aggregation rules come into
play as previously described. The actual quadtree would be stored as a static model of cell.
The explicit creation of aggregation hierarchies within the conceptual model is dictated by
a heterogeneous aggregation relation. If a robot arm consists of exactly two links, which are
different in nature, then this aggregation relation belongs in the conceptual model. However,
the potentially infinite recursion of spatial decomposition suggests a homogeneous aggregrate
relation, and is relegated to a static model stored within a “space object.”

OOPM specifies that an attribute is one of two types: variable or static model. Likewise,
a method of one of two types: code or dynamic model. A method can be of a functional
(representing a function) or constraint (representing a relation) nature. Once the conceptual
model has been constructed, we identify the attributes and methods for each class. An
attribute is a variable, whose value is one of the common data types—or a static model. A
method can be code, whose form depends on the programming language, or a dynamic model.
The structure of a class is seen in Fig. 6. Variables and code are described in OO languages
such as C++ [49]. We define a static model as a graph of objects and a dynamic model as a
graph of attributes and methods. The model types of interest here are dynamic. However,
the concept of static model complements the concept of dynamic model: methods operate
on attributes to effect change in an object. Dynamic models operate on static models and
variable attributes to effect change. We will use the following notation in discussing object-
oriented terms. When we speak of a class, we capitalize the first letter, as in Robot or Arm.
An object is lower case. An attribute that is a variable is lower case, whereas an attribute
that is a static model is upper case for the first letter. A similar convention is followed for
methods: a code method uses lower case with a parentheses “()” as a suffix; a dynamic model
method is the same but with a capitalized first letter. Classes are separated from objects
with a double colon “:” whereas objects are separated from attributes and methods using
a period “” This convention is similar to the C++ language and is a convenience when
communicating conceptual models textually. All classes, objects, attributes, and methods

A3

Agent Arm obile Robot Space
Is)lt;";lpe position Geometry Cell_Array
position Geometry
report() Move()

Execute() Rotate() Reach() Diffuse()

Figure 7: Phase 1, Step 2: Identify attributes and methods.

will use an italics font to differentiate them from surrounding text.
To provide some examples:

e A four-foot high robot rl can be represented as: Mobile_Robot::rl.height = 48.0, where
height is specified in inches. Alternatively, we can simply leave out the class name:
rl.height = 48.0, since we know that rl is an instance of Mobile_Robot by reviewing
the conceptual model. If there is a static model of a robot, in the form of a computer
aided design representation, then we would refer to this as r1.Geometry.

e A robot arm with a revolute joint will rotate, so we can create arm.angle as an attribute
of object arm and also arm.rotate() as a code method of arm that changes arm.angle.
If the dynamics of rotation are captured in a dynamic model Rotate, then we have
arm.Rotate() as my dynamic model. Object arm relates to object r in that the robot
class is an aggregate class containing sub-classes such as Arm. Moreover, an attribute
inside r called connectivity, with a linked list structure, would include arm. Should
the linked list connectivity be a static model or a variable of r? This is ambiguous
and under the user’s control. A general heuristic is that if an attribute contains a
data structure specifying geometry or relative position of sub-objects, then we call it
a model as opposed to a variable, but a case could be made either way.

e A landscape is an object that aggregates an array of cells or patches. The dynamics of
r, that moves within a cell, may be coded as r.Move(), a dynamical model or simply
as r.move(), a piece of code. A landscape subcell, landscape.cell[2,3] will contain some
number of robot objects using the appropriate data structure.

Fig. 7 illustrates a subset of the objects shown in Fig. 5. For this subset, we identify some
attributes and methods that we feel are necessary in simulating the scenario. At this point,
it is not necessary to identify the precise structure of each attribute and method since this
is part of the conceptual modeling phase. In drawing the attribute and methods, it is useful
to recreate Fig. 5 with the ezpanded class nodes shown in Fig. 7. Since this diagram would
be large for all classes in Fig. 5, we are illustrating a subset of all class nodes. We use the
scheme previously discussed to differentiate models from variables and code: models begin
with a capital letter and methods end with a pair of parenthesis “()”.

Fig. 8 displays another robot-oriented conceptual model to illustrate some of the points
we’ve made about generalization and abstraction. We use the following new acronyms:
DigitalTech for “digital technology,” DSPChip for “digital signal processing chip,” and Mux
for multiplexer. For each relation, we need to have a procedure. We’ll proceed from left to
right.

Al4

Base

id

DigitalTech CircuitCard|
word_format max_voltage
logic_type bus_connect

Circuit()

[

Motor

Computer

DSPChip

id
S1ZE

Ccpu

1d
memory

dsp()

Figure 8: Generic generalization and aggregation scenario.

e Relation 1 (Aggregation):

1. By default, Base will aggregate all methods and attributes using the set operation
union (U) unless otherwise specified. We’ll use this default to pass up all attributes

of Motor and Computer except for id.

2. Base.id is formed by Motor.id and Computer.id by concatenating them in a vector

iBase.id,Motor.id;,.

e Relation 2 (Generalization):

1. By default, Computer and DSPChip inherit all structure from DigitalTech through

copying. We’ll adopt the default on this one.

e Relation 3 (Dual):

1. The default structure passing for this is the same as for both aggregation and gen-
eralization. We are stating that a CircuitCard serves as a composition of DSPChip
and Mux as well as stating that DSPChip and Mux are types of CircuitCard.

2. For aggregation, we specify model Circuit() as being defined by a functional cou-

pling of dsp() and Mux().

3. For generalization, we use the default for inheriting max_voltage, but override the
inheritance for bus_connect since the bus connection is an attribute of the circuit

card and not relevant to DSPChip or Mux.

We’ve seen that generalization and aggregation provide us with power for structure passing,
but that we require both default procedures as well as special procedures which either limit

LA

X

Mux

Mux()

the structure passing in a particular way or accurately define it.

In object-oriented design, there are certain key characteristics that one must employ

throughout the design process:

e Coupling: In class hierarchies and graphs, classes are coupled together via relations,
most of which are aggregation or generalization. Coupling also extends to static (ref.
Sec. 6.1) and dynamic (ref. Sec. 6.2) models where objects, attributes and methods
are coupled together in graph form to create a model. Coupling provides the glue used

to bring classes and other object-oriented features together.

AlS

e Hierarchy: When a relation can be applied transitively (Camera is a kind of Sensor
that is, in turn, a kind of Fixed_Object) then this provides a convenient ordering of
knowledge. Furthermore, the transitive generalization and aggregation relations permit
the passing of class structure down and up hierarchies. Hierarchy plays a key role in
modeling as well with components having sub-components. Sub-component children
can be of the same type as the parent component (homogeneous hierarchy) or they can
be of different types (heterogeneous hierarchy).

® Encapsulation: Where does a particular model belong? To help make this decision, we
use the following rule: a model (static or dynamic) is encapsulated within the most
specific class or object that contains all attributes and methods defined in that model.
This is discussed in detail within Sec. 6.2.4.

Coupling provides the basis for sticking object-oriented components (class, object, attribute,
method) together, whereas hierarchy and encapsulation provide ways in which the coupled
components can be efficiently managed.

To summarize the conceptual modeling phase, we construct classes and relations among
classes. Two key hierarchical, recursive, relations that involve structure passing are general-
ization and aggregation. The conceptual model exists soley as a knowledge representation of
a physical system, and to permit operations such as structure passing and logical inference.

6 Physical Modeling

6.1 Static Modeling

The word “static” in static models refers to the inability of the model to cause change of
attribute; it does not mean that the model doesn’t change. For physical modeling, our
primary type of static model is one that specifies the topology or geometry of a physical
object such as r. However, a semantic net [53], would be an equally valid static model.
Dynamic models (ref. Sec. 6.2) have the ability to change static models over time. The
previously discussed conceptual model, composed of classes and relations, can also be seen
as dynamically changing with class relations changing over time. If this occurs then it is
logical to create an all-encompassing class called universe and then make the conceptual
model an attribute of universe in the form of a static model.

For modeling geometry and space, there are a number of representational techniques,
many of which are discussed by Samet in two volumes [47, 46]. We will not create any
extensions of static modeling methods. Instead, for our scenario conceptual model in F ig. 2,
we’ll discuss our alternatives with an example or two. In Fig. 2 we have two items: a space
s where robots behave. Space s can be modeled a simple square array, which hardly can
be classified as a model except that it is a model considering that it is an abstraction of
a physical object (i.e., a physical space). Beyond this straightforward model, it is often
useful to model space using varying degrees of resolution depending on the area of concern.
Areas of space with a sparse density of robots, for example, might be modeled “in the large”
whereas dense areas are subdivided hierarchically. A quadtree represents a simple form of
four-ply tree data structure that can be used to model the space. For 3D spaces, octrees
provide a related structure. Likewise, for the robot depicted in Fig. 2, there are methods

Al6

object s object r

end effector

\ n ower arm
s ; B 2 s joint
312 upper arm
4 41 %1 2 foundation
473
front bac)
wheels wheels
modeled as | |quadtree modeled as| |CSG Tree

]
e

311 312 313 314

[base| [komputer]

Figure 9: Phase 2, Step 1: Static models for space s and robot 7.

described in the literature on computer aided design and computer graphics [17, 20]. Fig. 9
displays two static models: the first model is a quadtree of space s and the second model is
a constructive solid geometry model of robot r.

The quadtree is composed entirely of objects, which when aggregated, form s. An object
can contain its own static models or an attribute called contains that refers to a list structure
of robots found in the object. Therefore, s; and s3;2 are sample objects that may contain
several robots. The reason for sub-partitioning a particular cell is that, depending on the
density of robots in a particular part of s, we may want to sub-divide our space. Another
reason is that if s represents a landscape, we may wish to focus our modeling resources in
a particular sub-cell within s, while still maintaining a partition of s. The CSG tree on the
right part of Fig. 9 provides a structure for the topology of r. The symbol |J denotes union
and () denotes intersection. A CSG tree contains two types of nodes: operations and objects.
For example r is an object composed of the union (operation) of objects arm, foundation
and wheels. A rectangular slab, when intersected with a cubic box, creates the base of r.
Figs. 10(a) and 10(b) display 3D geometric static models for both s and r, reflecting a more
realistic scenario configuration suitable for animation and immersive situations.

Al7

(a) Geometry for space s.

(b) Geometry for robot r.

Figure 10: Geometry representing static models for the scenario.

Al8

6.2 Dynamic Modeling
6.2.1 Overview

A dynamic model captures the way in which attributes change over time. At first glance, it
may appear that one can create a dynamic object-oriented model by linking together objects
in a graph. For example, supposing that robot r; gives food to 2. A temptation is to draw
an arrow from one object (r,) to the other (rz) and claim this as a dynamic model. In
traditional object oriented design, this message passing approach is specified as a way to
model the “behavior” of objects interacting with one another via messages passed from an
object to another. Unfortunately, while such a graph represents our intention of expressing
dynamics, it contains no information as to the underlying dynamics. The primary problem
is that we do not know which methods of 7, or 7, to use. Suppose that r; has many potential
dynamic models. Which particular dynamic model should we use in our “object” model?
The specification of an object pointing to another object is not sufficiently defined to be of
any real use for simulation. In effect, a graph containing the two objects is a static model, not
a dynamic one, since the graph depicts a geometric or semantic relation: one robot connected
to another. To accurately represent the dynamics of objects, we need a more comprehensive
and flexible approach that affords the modeler the ability to use familiar models such as
FSAs, System Dynamics graphs, compartmental flow models and block models.

6.2.2 Three types of Dynamic Model

The three model types that have strong ties with programming languages are: declarative,
functional and constraint. A declarative simulation model is one where states and event
transitions (individually or in groups) are specified in the model directly. Production rule
languages and logic-based languages based on Horn clauses (such as Prolog [24]) create a
mirror image of the declarative model for simulation. Moreover, declarative semantics are
used to define the interpretation of programming language statements. A functional model
is one where there is directionality in flow of a signal (whether discrete or continuous).
The flow has a source, several possible sinks, and contains coupled components through
which material flows. Functional languages, often based on the lambda calculus [31, 40}, are
similar in principle. If programming language statements are not viewed declaratively, they
usually are defined using functional semantics. The languages Lisp [51] and ML [37] are
two example functional languages. Lisp has some declarative features (side effects) whereas
other functional languages attempt to be “pure.” Finally, with regard to computer science
metaphors, constraint languages [6, 29] reflect a way of programming where procedures
and declarations are insufficient. The constraint language CLP(R) [21] (Constraint Logic
Programming) represents this type of language. Also, the next generation Prolog (Prolog
III) is constraint oriented. In constraint models, the focus is on a model structure, which
involves basic balances of units such as momentum and energy.

Fig. 11 illustrates the dynamic modeling taxonomy. The top level of Fig. 11 refers to the
multimodel type (ref. Sec. 6.3) since this type is composed of all sub-types previously dis-
cussed by using hierarchical refinement: declarative, functional, constraint and spatial. Con-
ceptual models are generated before multimodels since conceptual models are non-executable
and reflect relations among classes. Each of these sub-types has two sub-categories:

Al19

S T

Multimodel
]

|
@clarati\a ,Functionzﬁl ‘ Constraint’

]

Function Variable

|

State Event Equational Graph

Figure 11: Model taxonomy.

e Declarative models focus on patterns associated with states or events. An example
declarative model type with a state focus is the finite state automaton. The event
graph is an example with the event focus.

e Functional models are networks whose main components are either functions (as in
block models) or variables (as in the levels found in systems dynamics).

e Constraint models are represented as equation sets or as graphs. An example constraint
graph is an analog electrical circuit or a bond graph [7].

The extra model type not previously discussed here (but found in Fig. 1 and [13]) is spatial
model. In our discussion, a spatial model is a static model whose dynamics take on one of
three primitive types. So, we do not afford spatial models any special status since in OOPM,
they are artifacts of the methodology and of aggregation relations.

6.2.3 Definitions

To define how dynamical systems are embedded within OOPM, we need to address some
fundamental systems theoretic concepts. A time invariant system 1 can be abstracted as
follows: ¢ =< I,0,Q,Q,4, A >. The sets I and O represent input and output sets. () defines
the state space for the system. (2 represents the admissible set of input trajectories, 0 is the
state transition function, and A is the output function which is generally a function of Q.
There are internal and external events. An external event is one from “outside the system”
whereas an internal event is one “inside the system” (but from a lower abstraction level).
Further explanation and variations of the system formalism can be found in the systems (36]
and simulation [55] literature; however, the above definition suffices for our purpose. The
first key observation of OOPM is that we are encapsulating behavior (dynamic models) and
structure (static models) within objects. This represents a structured representation of a
system as opposed to an all encompassing system definition with a multi-dimensional state
space spanning many objects. For the aggregate objects, however, this large state space is

A20

accurately captured since these accrue fewer-dimensional state spaces of sub-objects through
composition. The following definitions are presented to bridge the gap between the formal
system components and our components. A class C; is defined as a sub-class of C' in an
aggregation relation; likewise, a class Ci is defined as an aggregate object composing C' as
a sub-class. We let C¢ = C U C" and C; = C U C; for notational convenience. A similar
notation can be constructed for objects O.

o State: A state of class C is contained within C’s attribute list. Comments: objects
that are leaves in an aggregation hierarchy will have low-dimensional state spaces with
internal and root nodes aggregating these low dimensional spaces. The state of object
arm for the robot may include a position for the centroid as well as an orientation 6.
The arm contains all states in Arm; through composition.

o Event: An event is classified as internal or ezternal.

1. An internal event for C is an input from within C;. Comments: all internal events
within C are inputs from C or sub-classes of C. A clock has an internal event
when the alarm rings, but the alarm mechanism is a sub-class C; of C and the
event is an output from C;. The computer for robot r is a sub-object of the robot.
The computer may periodically produce internal (relative to r) events that are
employed in a dynamical model in r).

2. An external event for class C is an input from a class in C*. Comments: An
external event to an alarm clock comes from the human hand or finger object
that presses a button to stop the alarm. All environmental activities in s affect r
through external events, since the environment is outside of r.

o Input: All inputs to C are either internal or external events.

e Output: All outputs from C are inputs to some P with the ezception of a sink node,
for which an output employs a method of C using the C'’s state attributes.

These definitions will help us in formulating common templates for dynamical models. A
primitive dynamical model is of three types: declarative, functional or constraint. For each
of these model categories, there are some common types that we define with templates.

1. Declarative: A finite state automaton (FSA) is defined with nodes and arcs. A nodeisa
state of C. and therefore an attribute of C. The arc contains a boolean-valued method
p() with arguments that are internal or external events. An event graph is defined with
nodes and arcs, as for an FSA. A node is an event (internal or external). An external
event relative to C is an attribute of (' and an internal event is an attribute of é’,-.
The arc in an event graph represents a method that schedules or causes the event on
the head of the arc. The robot r may be in one of three states: active, stationary
or maintenance. The maintenance phase is used for fixing the robot’s position via a
satellite. Therefore, a method is created in r that points to a dynamic model: an FSA
with three states. Arcs from one state to another in an FSA are boolean predicates.

A21

2. Functional: A block model has nodes and arcs. A node is a method of C, and the
arc represents a directed connection from one method to another. Both methods can
be found in C;. The block model is function-based since functions are made explicit
as nodes. Variable-based models such as System Dynamics [42] or compartmental
models [23] are the duals of function-based models since variables are placed at the
nodes. For a C with this type of method, the variables are attributes of C;. Functions
are often assumed to be linear, but if they are defined, they are methods found in
C;. For our scenario we would have to derive a directional activity to use a functional
model. One such activity is the movement of water on s over cells in a specific direction,
such as via a canal or along a river. Such boundary conditions suggest a functional
model, since without these boundaries, we would use a constraint model defined by
dynamics incorporating local conservation laws. Another activity is if robots cooperate
with each other to form a pipeline task, passing a product or food from one end of
the robot “chain” to the other. This activity is common in workstation cells in a
manufacturing scenario where robots are often fixed relative to each other in space.

3. Constraint: Constraint models are equational in nature, and reflect non-directional
constraints among object attributes. A class C' with a constraint equational model
contains an equation with terms containing attributes of C;. Equations can be repre-
sented in graph form as well as with bond graphs [7, 43, 50]. Models of non-directional
behavior, such as general hydrodynamic models are constraint-based. If all robots in-
teract with each other in ways dictated by nearest-neighbor conditions, for example,
this is modeled as a constraint since there is no consistent, time-invariant direction
associated with the dynamics.

6.2.4 Representing Dynamic Models

How are dynamic model components represented in the physical modeling methodology? We
will illustrate two model types (functional and declarative), each with two model sub-types.
For the functional model types, we use a block model and a System Dynamics model. For
the declarative model type, we will use an FSA and a Petri net. The following notation,
consistent with the previous notations, will be used throughout this discussion:

e Objects: An object is represented as obj. obj; represents a sub-object of obj (in its
aggregation hierarchy), and obj® represents a super-object which is composed, in part,
of obj. When indices i and j are used, it is possible that i = j or ¢ # j. This relation
rests with the particular application.

o Attributes: obj.a represents a variable attribute and obj.A represents a static model
attribute. a is short for any string beginning with a lower case letter; A is short for
any string beginning with an upper case letter. Attribute references (i.e. names) and
values are relevant: a name is just obj.a whereas the value of attribute @ is denoted
as v(obj.a). The following special attributes are defined for all objects: obj.input,
obj.output and obj.state and represent the input, output and state of an object at the
current time.

A22

obj.input() obj. M) obj.outgut()

! obj,, m20 !
o or
obj.m1() 0bjoM20 —|_,> obj , m4()
obj.input() gr or obj.outgut()
obj,.Ml1 obj . M4()
1 MIO obj 30 4
or B
0bj 3 M30)

Figure 12: A block multimodel refinement.

obj.input() %% \ %% obj.output()

obj l.rate obj ,.rate obj 5.rate
obj 2.statel=m 10 obj 4.stat<32=m2()

or or
obj 2.statel:Ml() obj 4.state2=M2()
Figure 13: A System Dynamics model.

e Methods: obj.m() represents a code method and obj.M () a dynamic model method.
m is short for any string beginning with a lower case letter; M is short for any string
beginning with an upper case letter. The following special methods are defined for
all objects: obj.input() and obj.output() and represent the input and output time
trajectories.

The block model contains acollection of blocks coupled together in a network. Each block
calculates its input, performs the method representing that block, and produces output. A
block is not an object since it represents a method within an object. Without any refinement
within a block, a function takes no time to simulate. Time is ultimately associated with
state change. All obj; represent sub-objects of obj. Fig. 12 displays two simple block models:
the first has one block and the second has 4 coupled blocks. The essence of multimodeling is
seen here: a method defined as a dynamic model of the same model sub-type: block. Fig. 13
shows a System Dynamics model that is similar to the block model except that instead of
methods represented by the network nodes, a node represents an object’s state (a variable
attribute). The same kind of multimodeling represented in Fig. 12 (refining a block into
a dynamic model) can be done for the model in Fig. 13; a block is refined into a System

A23

,,,,,, , -

v1(obj.state) v2(obj.state)=m2() !
or I
v2(obj.state)=M2(),

obj.input() .

pi() = boolean valued predicate containing arguments
external event of the form obj.input())
or internal event of the form obj.state or Ob,l .state

Figure 14: A finite state automaton.

__

obj.DynModel()

obj.state =M 1()

obj.stoarte1=m3()
obj.state1=M3()

obj.m() obj.output()_

or
0bj.M()

__

Figure 15: A Petri net.

Dynamics model. This multimodel refinement is particularly useful for our two declarative
model types shown in Figs 14 and 15 where input() and output() are not as obvious unless
we capture the model inside of a functional block. Multimodeling is denoted by drawing
a dashed functional block around the model, denoting model refinement. The methods
input() and output() are essential to perform coupling of models together. An FSA will
have an input() method and a state variable attribute obj.state, but we require coupling
information somewhere if we are to decide where the input is coming from and where the
output is going to. This coupling information for a method of obj is present in some o0bj*.
For example, if the FSA belongs in a robot r, defining the dynamics of state change for r,
the input must come from a physical object outside of r but within a more encapsulating
object such as the environment.

The predicates p; and p, in the FSA model in Fig. 14 require further explanation. A
predicate is defined as a logical proposition, whose value is boolean, containing internal and
external events. External events are of the form obj.input() and internal events are of the
form obj.state or obj;.state. Rules are another convenient dynamic model (of the declarative
type) that express changes of state and event. A rule-based model is composed of a collection

A24

of rules within an object obj, each rule ¢ of the form: IF p;(event, state) THEN obj.mi() or
obj.Mi(). The phrase p;(event, state) defines the same logical proposition discussed for the
FSA.

6.2.5 Single Object

Single objects are our starting point for defining dynamic models. For example, one may
create a simple declarative model in object r of class MobileRobot by specifying a finite
state automaton (FSA) model and linking this to r.Move(). We will let the FSA be defined
by two states, S and M for “Stationary” and “Move” respectively. A robot is in state
S until it receives a cue (an input signal) to move to state M. When the robot receives
another input signal, it moves back to state S. The state variable is located as an attribute
r.position. Therefore the semantics of the FSA would be such that attribute r.position would
be modified depending on the state S or M. For a single object, expressing the dynamical
model in terms of object-oriented features turns out to be straightforward. For a number of
objects, the procedure is more involved but still reflects a natural method of modeling.

A single object may be an entity such as r or a more general space such as s. For s,
we define dynamic models to be those that change attributes of s. Models such as partial
differential equations (PDEs) and cellular automata (CA) can be defined within s. For
example, the constraint reaction-diffusion model

dp

ot
as a method (dynamic model) of s describes how ¢ changes over time. For our robot scenario,
¢ is an attribute of the landscape s that varies over each cell—such as water depth or
vegetation density. Furthermore, r can interact with s since a component in a method of r
can depend upon cell attributes, and vice versa.

f(¢) + V% (1)

6.2.6 k& Non-Interacting Objects

Non-interacting objects do not require any additional dynamic models other than the ones
encapsulated within each object. If many O; reflect robots in motion, there is no need for
a dynamic model in an O to orchestrate this motion, unless there are constraints placed on
the dynamics, in which case a model would be necessary. All O;, for example, would have
to be scheduled by a simulation engine so that they could perform their individual tasks;
however, this scheduling is a part of the model execution and does not affect model design.

6.2.7 £k Interacting Objects

e k directionally interacting objects: interacting objects with a directional flow use func-
tional models: data of some type flow through the methods of objects to achieve
a change of state. For example, assume that two robot objects m; and r, are in a
quadtree sub-cell called cell. r; always hands a part to 5. This describes the interact-
ing dynamics of an aggregate object r containing r; and r,. A method f; is defined
in 7y that captures what is done with the part when r; receives it. Similarly, ro does
f2 to the incoming part it gets from r;. We now make a functional model that is

A25

composed of two coupled functions f; and f, (fy is linked directionally to f3): fi — fo.
This coupling is performed in accordance with the aggregation rule to define how the
coupling is to occur. The aggregate functional model becomes a method of r.

e k non-directionally interacting objects: interacting objects with no directionality in the
flow are represented using constraint models. If k& objects interact in this fashion, a
constraint model is encapsulated within the aggregate object containing all k& objects.
Robot r; may interact with 7, in such a fashion. A simple method of interaction is
one using a spring metaphor. We attach a virtual spring between r; and r,. Then,
given an acceleration to ry, both robots will move in accordance with Hooke’s law in
an effort to achieve equilibrium. The equation for Hooke’s law is a constraint model
located in an aggregate object r that contains both r; and r,. The equation has terms
that are attributes of r; and r,. The way in which the equation terms are clustered is
determined by an aggregation rule for equation construction.

One theme that arises from our methodology of dynamic models is that one locates a
dynamic model in the object for which it is appropriate. Often, this object already exists
as does r which has a functional model referencing methods stored in r’s sub-objects such
as arm, end-effector and foundation. However, in some cases, an aggregate object must
be created to locate the model, as with the two robots interacting in spring-like manner:
the model of their interaction does not belong to either of them, only to their aggregate
object. The latter concept also applies to populations of objects where they are present in
a scenario. To take an example, let’s consider a constraint model in equation form. Where
do the equation and the composite equation terms belong? If a term or part of an equation
contains attributes only of class C then, it belongs in C. If a dynamic model in 7; (on the
end of a spring) contains only terms of r,’s position (including input terms dependent on
time alone) then the model belongs inside 7;. If terms including r,’s position are in a term
or equation, then we must move the term or equation up a level to be located in 7.

6.2.8 Continuum Models

It may be readily apparent how to take the average scenario object and define it to be
object-oriented; however, models that have a fluid or non-discrete nature seem to present
an incongruity within our defined approach. However, continuum physical phenomena such
as fluids, whether gaseous or liquid, need not present a problem for the methodology. If the
fluid object is sub-divided into constituent objects in the same way that scalar and vector
fields are discretized for numerical reasons (to solve the field equations), then each discrete
part is captured as a sub-object of the field. We briefly considered the concept of a river over
our robot space s. If the river has rigid boundaries, the sub-objects of s will contain sub-
objects of the river object. These object aggregate relations are time-dependent. Objects
can be seen to move with the field or stay fixed. If they stay fixed, the dynamics associated
with each object follow the methods of finite difference formulations. If they move, they
become fluid particle objects and are not unlike the robots. If a fluid object is compressible,
or the object can add or subtract sub-objects, we add these objects over time and our static
models change to accommodate the change in structure. This is a case of having to delete

A26

and add objects dynamically. In the following section, we’ll treat an example of dynamic
object creation using a biological metaphor.

6.2.9 Morphogenesis

In the previous examples of dynamic systems, a dynamic model was specified within an object
for which it was relevant. But, what if the dynamics cause a change in the static model of an
object? This is what happens in biological systems and what we call morphogenesis [33]—a
temporal change in structure. Lindenmeyer Systems [30] (L-Systems) capture a dynamic
way of modeling that falls under the declarative class of dynamic models: rules are specified
to model change of object structure. We begin with an object whose state is defined by an
attribute serving as an initial condition w, and continue simulation by growing a static model
tree composed of objects. For most engineered devices, such as robots, we do not generally
consider dynamic growth to apply; we apply growth to natural objects. However, we stated
earlier that our robot was capable of changing shape, so we can carry this metaphor further
by stating that the robot link structure in Fig. 2 is the piece of the robot that grows like a
tree over time. At the end of the recursive subdivision, an end-effector grows onto the end
of each link chain much as a flower grows at the tip of a branch or plant stem. The recursion
defined in the productions provides for a tree of objects that grows and is constructed as the
methods are applied. After a tree has grown, other state updating methods can be applied
for modifying the object states; however, in the majority of cases, growth and decay methods
will continue to be applied in parallel with methods that, for instance, change the state of
a tree structure (engineered, biological or otherwise) as a result of external forces such as
wind or water.

For our models, we will ignore the joint object and not directly model the time-dependent
change of link width and length. The L-System production model for simulating the link-tree
in Fig. 16 is defined below:

Dy w:a
pa: a— I[A][A]A
P3 A—IB
ps: B —=[C][C]
Ps - C—1ID
De - D— K

Production p, is the initial condition (or terminating condition). p, provides the basic
support structure for the plant with an internode, two angle branches and a straight branch.
Each branch is constructed with ps. p4 provides a two branch structure at the end of each
of the three branches just created, and each of these new branches contains a flower (via
productions ps and pg). In the case of L-System model definition, productions p, through
ps represent a single dynamical model defined as a method of the overall aggregate robot
object r; however, it is also possible to separate rules so that a rule defines the dynamics for
the object for which it applies. In this case, the rule becomes a method in that object. This

A27

Y

Time 0 Time 1 Time 2 Time 3

Figure 16: Time snapshots for robot link tree.

“distributed” rule approach is a logical one and since r represents an aggregation of all sub-
objects, all six rules are aggregated as a method of r through the composition properties of
aggregation. These approaches may suggest different model execution methods for globally
situated rules and distributed rules, but we shall not address the model execution issues here
since our focus is on model design.

We let time advance be associated with the execution of rules until the appearance of
a physical segment (I or K) occurs. The changing state of the robot link tree is shown in
Fig. 16. The static model for the growth at time 3 is illustrated in Fig. 17 and the corre-
sponding object and sub-object definitions are illustrated in Fig. 18. Fig. 18 also contains
the “internode” I objects that define the individual links.

6.3 Multimodels

We identified dynamic models as being one of three types, and it is possible to create a
hierarchy of dynamic models by refining a component of one model as representing another
dynamic model. So, for example, one may take a state of r and refine this into a functional
model containing two coupled functions. This sort of model decomposition is called hetero-
geneous model decomposition [11, 32, 13] since more than one model type is used during
refinement. Homogeneous refinements are more commonly used, where a model component
is refined into similar components but using more detail. In [13], multimodels were visual-
ized outside of an object-oriented framework. In OOPM, a multimodel may be embedded
in several physical objects; however, the individual multimodel layers can still be abstracted
by refining dynamic model components. Even though we have specified multimodels as ap-
plying to dynamic objects, their utility is just as applicable to static models. For example,
consider a static model of s: object s contains a quadtree model as an attribute. Each cell
of the quadtree contains static models of all robots r inhabiting the cell. Moreover, a link
contained with r may be subdefined into yet another model type: a collection of finite volume
objects used mostly in finite element analysis.

Multimodels, whether of static or dynamic models, involve changes in scale so that as
we refine our models, we change the scale of our scenario and new sub-objects emerge at
each abstraction level. For homogeneous refinement, a scale change is accompanied by a
regular kind of scale change. Consider the static case first. A landscape s at one level can be
sub-divided into cells that are the same shape as s but have metric transformation applied
to each of them. This represents a model type we will call array. For dynamic models, one

A28

a (p[l,p2)

$ i | ;

Il Al (p3) A2(p3) A3 (p3)
I

/N /N N

2 Bl(p4) I3 B2(p4) 14 B3 (p4d)

—7

Cl(p5) C2(p5) C3(pS) C4(pS) C5(p5) C6(p5)

ANV AR AR ARYARA

I5 Dip6)I6 D2(p6) 17 D3(p6) I8 DA(p6) 19 D5(p6) 110 D6(p6)

b L | $

K1 K2 K3 K4 K5 K6

Figure 17: Static model for the robot at time 3.

can look inside r's computer to find a digital design, composed of interconnected blocks.
Each block is subdivided into blocks, yet again, but with blocks of finer granularity. On the
other hand, with dynamic model heterogeneous decomposition, we find that we define more
coarse grained dynamics for r using an FSA with finer grained dynamics using other model
types such as the functional block model. For static models, we may decide to subdivide
each cell of s using quadtrees. This represents a shift in model type: from an array to a
quadtree. Recent work on multimodeling and a new taxonomy for structural and behavioral
abstraction is found in [15, 28].

Every dynamic model obj.M() has model components. For multimodeling, the follow-
ing three model components are important: 1) attribute reference, 2) attribute value, and
3) method. Refinements can be made for each of these model component types.

1. An attribute reference is denoted by referring to an attribute obj.a. In particular,
attributes which hold the set or subset of state space can be used for multimodels by
refining the attribute obj.state into a method: obj.state = ml() for a code method
refinement or obj.state = M1() for a dynamic model refinement. Examples of this
type of refinement are: 1) a Petri net place, 2) a compartment of a compartmental
model or 3) a level in a System Dynamics model.

2. An attribute value is denoted by referring to the value of an attribute obj.a, denoted

A29

{(a) Object a. (b) Objects A1,A2,A3. (c) Objects B1,B2,B3.

D6

(d) Objects C1...C6. {e) Objects D1...D6.

Figure 18: Objects created by time 3.

as v(obj.a). Attribute values appropriate for multimodels reflect a phase or aggre-
gate state. A multimodel refinement of an attribute value is performed as either
v(obj.state) = ml() or v(obj.state) = M1(). Examples of this type of refinement
are: 1) an FSA state or a 2) Markov model state.

3. A method is denoted by referring to an objects method: either m1() for a code method,
or M1() for a dynamic model method. Examples of this are: 1) a function in a block
model, 2) a Petri net transition, or 3) a component in a graphical constraint model such
as a bond graph. Recall that methods can be constraint relations as well as functions.

6.4 Location of Models

In what object or class does a model belong? This is a key question that arises when building
the conceptual model. As we have seen with the different dynamic model types, there are
specific approaches for model location depending on the type. In general a good heuristic for

A30

model positioning is to place a model in an object whose composite objects contain all model
components. For example, when we built a functional model for two robots r; and 7o, we put
the coupled two-function model of f; — f5 inside of an aggregate object r containing r; and
ro. The model could not belong in any single robot even though the model’s components
are located in individual robots. The same heuristic can be employed for all model types.
For an equational model, we might have the following model inside object ol:

d

—p=kip+u(t

5P =k +ult)

where p is a density attribute within object ol. Since this model includes only object ol’s
attribute and reference to an external input, it belongs in ol. Contrast this against:

d

—p = k1p+ 02.

d tﬂ 1P Y

which contains a constraint relation including a term involving another object’s (02) attribute
~. This model must be placed in an aggregate object that contains both ol and 02.

6.5 Predator-Prey Model

Consider that some robots act like predators and some act like prey. In this case, an ap-
plicable dynamic model to create is along the lines of the Lotka-Volterra model [33]. A
conceptual model is shown in Fig. 19. This model suggests that we have a physical scenario
composed of an environment (weather), landscape and a population of organisms. There
are two types of populations: predator and prey. For the sake of the biological metaphor,
we choose Panther as the class of predator and Bird and Deer as sample prey classes. The
Lotka-Volterra model is an example of a general population model that can be characterized
as a p-state ecological model [10]. The designation of p-state is positioned in Fig. 19 within
the Population class where it belongs. For completeness, we have included other types of
ecological models [10, 19] and where they fit within the class hierarchy:

e General Population Model (p-state): a model that specifies the dynamics of single or
inter-species populations.

e Structured Population Model (i-state distribution): a population model where other
independent variables such as size or age are used to “structure” the population into
classes. We placed this within class BirdPop. A discrete set of structured classes could
also be created under BirdPop if desired, such as Hatchling, Juvenile and Adult.

e Individually Model (i-state configuration): a set of continuous-time equations, one per
individual. If one chooses a discrete event-type approach, using rules for the model type
for example, other model types are possible. Wolff [52] refers to a rule-based model as
an individual-oriented model (IOM) to differentiate it from the i-state configuration
model, termed an individual-based model (IBM).

Let’s note the rules for generalization and aggregation:

o Aggregation:

A3l

Scenario

T

[o |
Cnvironmen Landscape Population
count
rate
Model() <— p-state
interaction()
PredatorPop PreyPop
death() birth()
PantherPop | | BirdPop DeerPop
X
i-state distribution
Bird
i-state configuration (IBM)
“~10M

Figure 19: Lotka-Volterra population dynamics.

1. An specific aggregation rule for attribute count:
Population.count = PredatorPop.count + PreyPop.count

A more general aggregation rule for count, keeping in mind updates and additions
to this conceptual model, is:

C.count = Y Ci.count
i
where C matches any class containing count and C; matches the sub-classes of C.

2. An aggregation rule for dynamic model method Model() in Population:

PredatorPop.rate = PreyPop.birth() — PredatorPop.death()
PreyPop.rate = PreyPop.birth() — interaction()

3. An aggregation rule for code method interaction() in Population:

interaction() = PreyPop.count x PredatorPop.count

A32

o Generalization: We let count be inherited (passed down) but not any of the methods
defined in Population, PredatorPop or PreyPop.

In reviewing our model, we realize several important benefits from the use of OOPM in
creating this model. The main benefit is one of knowledge representation that focuses on class
creation and the lexical naming of equational terms such as birth() and interaction(). By
making names explicit, we make the model more comprehensible. The benefits of structure
passing are inheritance and aggregation. The definition of Population.Model() is invariant
to additional PredatorPop or PreyPop sub-classes we may choose to add in the future. For
example, we may later add AlligatorPop under PredatorPop. Since AlligatorPop would pass
count upward via the first aggregation rule, the population model need not be redefined.

7 Programming and Implementation

We are building a system called MOOSE: multimodeling object-oriented simulation environ-
ment. MOOSE will capture the essence of OOPM by leading the user through the phases of
model development shown in Fig. 3. The user constructs a conceptual model using a Tk/Tcl
graphical user interface. The user adds attributes and methods. For those attributes and
methods that are defined as models, there is a model window that permits visual editing. As
the model is executed, the simulation output is shown on a scenario window. Our progress
to date has illustrated the use of simulation to the planning process [27, 26]; however, we are
still building the graphical user interface utilities for the model window. A sample scenario
window for an air force mission application was constructed along with a simulation built
on top of SimPack [12, 13, 9].

We draw a dividing line between the actual implementation and the logical design which
is used as a basis for code implementation. Our focus in this article has been on this logical
design. Some implementation choices, for example, have dictated that for a particular object-
oriented language, creating formal objects for every individual in a population may not be
computationally feasible, even though our design is drawn so that these objects exist. This
is not a problem and reflects that the design stands by itself and is used as an intermediate
vehicle from concept to code. Different computer languages have their own unique features,
and the basic object-oriented physical design should not be bound by what is offered or not
offered by these languages. C++ is an example of a language that offers inheritance but
not composition so while inheritance is supported in the form of derived class structure,
composition is handled on a case-by-case basis where the programmer stores the structure
in the object(s) affording computational efficiency.

8 Conclusions

To build simple systems, we may sometimes get away without using a model design. In such
a case, we may sketch a few formulae and proceed directly to the coding phase. However,
with the increasing speed of personal computers, we are in a period of increased development
for model design that might best be captured by the word “integration.” As scientists and
engineers, we have our own individual static and dynamic models for our part of the world.
But this this not enough when we want to integrate models together. Suddenly, we find

A33

ourselves overwhelmed with the sheer size of model types, and frequently some may not
have model types but have only coded their simulations. To get a handle on this situation,
we need a blueprint as if we were going to perform this integration as a metaphor to building
a house. Without a blueprint, the electrician and carpenter are at odds as to how to interact.
‘They each construct their own complex parts and one only hopes that the resulting glued-
together construction will function as a whole. The blueprint helps them to work together.
Our methodology for object-oriented physical design is like the blueprint, permitting models
of different types to fit together so that more complex and larger systems can be studied.
These larger systems require an interdisciplinary approach to model design and so we must
agree on a basic language for blueprints.

Our immediate goals are to apply this general methodology to various technical areas
including the simulation of multi-phase particle flows in the University of Florida Engineering
Research Center for Particle Science and Technology and an integrated modeling environment
for studying the effects of changes in hydrology to the Everglades ecosystem managed by
the South Florida Water Management District. For decision making in the military, many
levels of command and control exist, and the methodology provides a consistent approach
in using models for planning and mission analysis both “before action” and during “after
action review.” All of these systems have a characteristic in common even though they
may appear at first quite different: they involve the modeling of highly complex, multi-level
environments, often with individual code and models developed by different people from
different disciplines. MOOSE development is underway and C++ code and GUI interfaces
are being constructed to make it possible for analysts to use our system. A longer range goal
is to allow our models to be distributed over the Internet (or over processors for a parallel
machine). The object oriented concepts of re-use and encapsulation will help greatly in this
endeavor. Also, we are trying to create a bridge between the use of modeling in simulation
and general purpose programming. As various authors have noted [8, 14], if one liberally
applies the concept of metaphor to software engineering, the differences between software
and systems engineering begin to dwindle to the point where software engineering can be
considered a modeling process.

Acknowledgments

I would like to acknowledge the graduate students of the MOOSE team for their individual
efforts in making MOOSE a reality: Robert Cubert, Tolga Goktekin, Gyooseok Kim, Jin Joo
Lee, Kangsun Lee, and Brian Thorndyke. In particular, Brian and Robert critiqued an early
version of the manuscript and Tolga designed the geometry in Figs. 10(a) and 10(b). We
would like to thank the following funding sources that have contributed towards our study of
modeling and implementation of a multimodeling simulation environment for analysis and
planning: (1) Rome Laboratory, Griffiss Air Force Base, New York under contract F30602-
95-C-0267 and grant F30602-95-1-0031; (2) Department of the Interior under grant 14-45-
0009-1544-154 and the (3) National Science Foundation Engineering Research Center (ERC)
in Particle Science and Technology at the University of Florida (with Industrial Partners of
the ERC) under grant EEC-94-02989.

A34

References

(1]

2]

3]
[4]

[10]

[11]

[12]

[13]

[14]

[15]

Osman Balci and Richard E. Nance. Simulation Model Development Environments: A
Research Prototype. Journal of the Operational Research Society, 38(8):753 — 763, 1987.

Jerry Banks and John S. Carson. Discrete Event System Simulation. Prentice Hall,
1984.

G. M. Birtwistle. Discrete Event Modelling on SIMULA. Macmillan, 1979.

Grady Booch. On the Concepts of Object-Oriented Design. In Peter A. Ng and Ray-
mond T. Yeh, editors, Modern Software Engineering, chapter 6, pages 165 — 204. Van
Nostrand Reinhold, 1990.

Grady Booch. Object Oriented Design. Benjamin Cummings, 1991.

Alan H. Borning. THINGLAB - A Constraint-Oriented Simulation Laboratory. Tech-
nical report, Xerox PARC, 1979.

Peter C. Breedveld. A Systematic Method to Derive Bond Graph Models. In Second
European Simulation Congress, Antwerp, Belgium, 1986.

Timothy Budd. An Introduction to Object Oriented Programming. Addison-Wesley,
1991.

Robert M. Cubert and Paul A. Fishwick. OOSIM User’s Manual. Technical report, Uni-
versity of Florida, Department of Computer and Information Science and Engineering,
1996.

Donald L. DeAngelis and K. A. Rose. Which Individual-Based Approach is Most Ap-
propriate For a Given Problem? In Donald L. DeAngelis and Louis J. Gross, editors,
Individual-Based Models and Approaches in Ecology, pages 67-87. Chapman and Hall,
New York, 1992.

Paul A. Fishwick. Heterogeneous Decomposition and Coupling for Combined Modeling.
In 1991 Winter Simulation Conference, pages 1199 — 1208, Phoenix, AZ, December 1991.

Paul A. Fishwick. Simpack: Getting Started with Simulation Programming in C and
C++. In 1992 Winter Simulation Conference, Arlington, VA, December 1992.

Paul A. Fishwick. Simulation Model Design and Ezecution: Building Digital Worlds.
Prentice Hall, 1995.

Paul A. Fishwick. Toward a Convergence of Systems and Software Engineering. IEEE
Transactions on Systems, Man and Cybernetics, May 1996. Submitted for review.

Paul A. Fishwick and Kangsun Lee. Two Methods for Exploiting Abstraction in Sys-
tems. AI, Simulation and Planning in High Autonomous Systems, pages 257264, 1996.

A35

[16] Paul A. Fishwick and Bernard P. Zeigler. A Multimodel Methodology for Qualitative
Model Engineering. ACM Transactions on Modeling and Computer Simulation, 2(1):52—-
81, 1992.

[17] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer
Graphics: Principles and Practice. Addison-Wesley, 1990. Second Edition.

[18] Ian Graham. Object Oriented Methods. Addison Wesley, 1991.

[19] Thomas G. Hallam, Ray R. Lassiter, Jia Li, and William KcKinney. Modeling Popula-
tions with Continuous Structured Models. In Donald L. DeAngelis and Louis J. Gross,
editors, Individual-Based Models and Approaches in Ecology, pages 312-337. Chapman
and Hall, New York, 1992.

[20] Donald Hearn and M. Pauline Baker. Computer Graphics. Prentice Hall, 1994.

[21] Nevin Heintze, Joxan Jaffar, Spiro Michaylov, Peter Stuckey, and Roland Yap. The
CLP(R) Programmer’s Manual: Version 1.1, November 1991.

[22] David R. C. Hill. Object-Oriented Analysis and Simulation. Addison-Wesley, 1996.

(23] John A. Jacquez. Compartmental Analysis in Biology and Medicine. University of
Michigan Press, 1985. Second edition.

[24] Robert Kowalski. Logic for Problem Solving. Elsevier North Holland, 1979.

(25] Averill M. Law and David W. Kelton. Simulation Modeling € Analysis. McGraw-Hill,
1991. Second edition.

[26] Jin Joo Lee. A Simulation-Based Approach for Decision Making and Route Planning.
PhD thesis, June 1996.

[27] Jin Joo Lee and Paul A. Fishwick. Real-Time Simulation-Based Planning for Computer
Generated Force Simulation. Simulation, 63(5):299-315, November 1994.

[28] Kangsun Lee and Paul A. Fishwick. A Methodology for Dynamic Model Abstraction.
SCS Transactions on Simulation, 1996. Submitted August 1996.

[29] William Leler. Constraint Programming Languages: Their Specification and Generation.
Addison Wesley, 1988.

[30] Aristid Lindenmeyer. Mathematical Models for Cellular Interaction in Development.
Journal of Theoretical Biology, 18:280-315, 1968.

[31] Greg Michaelson. An Introduction to Functional Programming through Lambda Calculus.
Addison Wesley, 1989.

[32] Victor T. Miller and Paul A. Fishwick. Heterogeneous Hierarchical Models. In Artificial
Intelligence X: Knowledge Based Systems, Orlando, FL, April 1992. SPIE.

A36

[33] J. D. Murray. Mathematical Biology. Springer Verlag, 1990.

[34] Richard E. Nance. Simulation Programming Languages: An Abridged History. In 1995
Winter Simulation Conference, pages 1307 — 1313, Washington, DC, December 1995.

[35] Donald A. Norman. The Design of Everyday Things. Currency Doubleday, New York,
1988.

[36] Louis Padulo and Michael A. Arbib. Systems Theory: A Unified State Space Approach
to Continuous and Discrete Systems. W. B. Saunders, Philadelphia, PA, 1974.

[37] L. C. Paulson. ML for the Working Programmer. Cambridge University Press, 1991.

[38] James L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1981.

[39] Herbert Praehofer. Systems Theoretic Formalisms for Combined Discrete-Continuous
System Simulation. International Journal of General Systems, 19(3):219-240, 1991.

[40] G. Revesz. Lambda Calculus Combinators and Functional Programming. Cambridge
University Press, 1988.

[41] Chell A. Roberts, Terrence Beaumariage, Charles Herring, and Jeffrey Wallace. Object
Oriented Simulation. Society for Computer Simulation International, 1995.

[42] Nancy Roberts, David Andersen, Ralph Deal, Michael Garet, and William Shaffer.
Introduction to Computer Simulation: A Systems Dynamics Approach. Addison-Wesley,
1983.

[43] Ronald C. Rosenberg and Dean C. Karnopp. Introduction to Physical System Dynamics.
McGraw-Hill, 1983.

[44] Jeff Rothenberg. Object-Oriented Simulation: Where do we go from here? Technical
report, RAND Corporation, October 1989.

[45] James Rumbaugh, Michael Blaha, William Premerlani, Eddy Frederick, and William
Lorenson. Object-Oriented Modeling and Design. Prentice Hall, 1991.

[46] Hanan Samet. Applications of Spatial Data Structures: Computer Graphics, Image
Processing, and GIS. Addison-Wesley, 1990.

[47] Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
1990.

[48] Lee W. Schruben. Simulation Modeling with Event Graphs. Communications of the
ACM, 26(11), 1983.

[49] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley, 2 edition, 1991.

[50] Jean Thoma. Bond Graphs: Introduction and Application. Pergamon Press, 1975.

A37

[51] Patrick Henry Winston and Berthold Klaus Paul Horn. LISP. Addison Wesley, second
edition, 1984.

[52] Wilfried F. Wolff. An Individual-Oriented Model of a Wading Bird Nesting Colony.
Ecological Modelling, 72:75-114, 1994.

[53] William A. Woods. What’s in a Link: Foundations for Semantic Networks. In Daniel
Bobrow and Allan Collins, editors, Representation and Understanding. Academic Press,
1975.

[54] Bernard P. Zeigler. Towards a Formal Theory of Modelling and Simulation: Structure
Preserving Morphisms. Journal of the Association for Computing Machinery, 19(4):742
- 764, 1972.

[55] Bernard P. Zeigler. Theory of Modelling and Simulation. John Wiley and Sons, 1976.

[56] Bernard P. Zeigler. DEVS Representation of Dynamical Systems: Event-Based Intelli-
gent Control. Proceedings of the IEEE, 77(1):72 - 80, January 1989.

[57] Bernard P. Zeigler. Object Oriented Simulation with Hierarchical, Modular Models:
Intelligent Agents and Endomorphic Systems. Academic Press, 1990.

Biography

Paul A. Fishwick is an Associate Professor in the Department of Computer and Information
Science and Engineering at the University of Florida. He received the PhD in Computer and
Information Science from the University of Pennsylvania in 1986. He also has six years of
industrial /government production and research experience working at Newport News Ship-
building and Dry Dock Co. (doing CAD/CAM parts definition research) and at NASA
Langley Research Center (studying engineering data base models for structural engineer-
ing). His research interests are in computer simulation modeling and analysis methods for
complex systems. He is a senior member of the IEEE and the Society for Computer Simu-
lation. He is also a member of the IEEE Society for Systems, Man and Cybernetics, ACM
and AAAIL Dr. Fishwick founded the comp.simulation Internet news group (Simulation
Digest) in 1987. He has chaired workshops and conferences in the area of computer simu-
lation, and will serve as General Chair of the 2000 Winter Simulation Conference. He was
chairman of the IEEE Computer Society technical committee on simulation (TCSIM) for
two years (1988-1990) and he is on the editorial boards of several journals including the
ACM Transactions on Modeling and Computer Simulation, IEEE Transactions on Systems,
Man and Cybernetics, The Transactions of the Society for Computer Simulation, Interna-
tional Journal of Computer Simulation, and the Journal of Systems Engineering. Dr. Fish-
wick’s WWW home page is http://wuw.cise.ufl.edu/~fishwick and his E-mail address
is fishwick@cise.ufl.edu.

A38

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996 397

Asynchronous Parallel Discrete Event Simulation

Yi-Bing Lin and Paul A. Fishwick, Senior Member, IEEE

Abstract—Complex models may have model components dis-
tributed over a network and generally require significant ex-
ecution times. The field of parallel and distributed simulation
has grown over the past fifteen years to accommodate the need
of simulation the complex models using a distributed versus
sequential method. In particular, asynchronous parallel discrete
event simulation (PDES) has been widely studied, and yet we en-
vision greater acceptance of this methodology as more readers are
exposed to PDES introductions that carefully integrate real-world
applications. With this in mind, we present two key methodologies
(conservative and optimistic) which have been adopted as solutions
to PDES systems. We discuss PDES terminology and methodology
under the umbrella of the personal communications services
application.

I. INTRODUCTION

UR purpose is to introduce the basic technical concepts

of distributed simulation of event-based models (so
called discrete event models), and to tie these generic concepts
to a specific application: personal communications services
(PCS). Several introductory articles have been presented in
the literature such as Fujimoto [1], Nicol et al. [2] and
Richter et al. [3]. These papers have helped to disseminate
the asynchronous parallel discrete event simulation (PDES)
methodology for a wide readership. Our approach is similar
but stresses a single real world application for discussing the
methodology of PDES. By defining the methodology and all
PDES terminology within the context of the PCS application,
this paper serves both as a tutorial to PDES and as an
introduction to PCS simulation modeling. PCS is a rich enough
application to illustrate most basic PDES concepts.

The processing elements in PDES can either be of a parallel
or distributed nature. An MIMD machine with multiple asyn-
chronous elements performing message passing is an example
of a parallel machine. Distributed elements normaily refers to
local or wide area networks composed of inter-connected set
of heterogeneous workstations and computers. PDES is used
for one of two reasons: 1) one wants to execute a model faster
than is possible in a sequential machine, or 2) one must model
in a distributed fashion because of a constraint that a process

Manuscript received January 15, 1995; revised July 25, 1995. This work was
supported by the Rome Laboratory, Griffiss AFB, NY, under Contract F30602-
95-C-0267, and Grant F30602-95-1-0031, the Department of the Interior
under Grant 14-45-0009-1544-154, and the National Science Foundation
Engineering Research Center (ERC) in Particle Science and Technology,
University of Florida (with Industrial Partners of the ERC), under Grant EEC-
94-02989.

Y.-B. Lin is with the Department of Computer Science and Information
Engineering, National Chiao Tung University, Hsinchu 300, Taiwan, R.O.C.
(e-mail: liny@csie.nctu.edu.tw).

P. A. Fishwick is with the Department of Computer and Information
Sciences, University of Florida, Gainesville, FL 32611 USA (e-mail: fish-
wick@cis.ufl.edu).

Publisher Item Identifier S 1083-4427(96)03838-6.

(i.e., computation) must be distributed rather than localized to
a single processor. One author (Lin) has demonstrated various
speedups possible on a distributed memory architecture for
the PCS application [4], [5]. There is no question that PDES
speeds up otherwise serial computations during a simulation.
The second reason for PDES (distributed model constraint)
is based on a situation where models for system components
are stored in physically different locations. The other author
(Fishwick) is building a prototype distributed simulation of
a process plant where each plant component is ultimately
co-located with the manufacturer of that component.

The paper proceeds as follows. First, in Section II, we
define our terms within the PDES area and demonstrate the
generic approach to distributed simulation. In Section III, we
introduce the PCS application and demonstrate the need for
synchronization of incoming messages to a given process.
There are two key approaches to synchronization. Method
1, defined in Section IV, is termed the conservative method
since it ensures that the causal relation among time consecutive
events will be maintained at all times during the simulation.
Method 2 is defined in Section V, and identifies the optimistic
method. In this approach, the causal relation can be broken
with subsequent fixing of state variables. We close in Section
VI with directions for the future of PDES.

Throughout this paper, we use three font styles to represenz
different concepts. The typewriter type style represents
attributes or methods (e.g., SendMessage ()) of objects.
The italic type style represents variables such as LP or
p. The serif type style represents event types such as
CallArrival. :

II. PARALLEL DISCRETE EVENT SIMULATION

A. Basic Terminology

We begin by defining terms which are commonly found in
the simulation and PDES fields. These terms will be revisited
in Section 3 when we assign the terms to the PCS application.
The study of any physical system to be simulated begins with
the creation of a model. Such a model can be in one of
several types [6]: 1) conceptual, 2) declarative, 3) functional,
4) constraint, 5) spatial or 6) multimodel. One begins with
a conceptual model which describes qualitative terms and
class hierarchies for the system. In many ways, the conceptual
model “organizes” the definition of attributes, methods and
general characteristics of each system component without
going so far as to ascribe dynamics to components. The next
four model types reflect an orientation to system construction;
a system may be constructed as a Petri net {7], queuing model
[8] or as a cellular automaton [9] for instance. The last model

1083-4427/96305.00 © 1996 IEEE

Bl

398 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996

LP@

schedule

schedule

)

o

Input Channel 'YX

Buffers

Event

next_event

Routines

Output Channel

uffers

Fig. 1. Anatomy of a logical process (LP).

type (multimodel) permits the integration of basic model types
to create a model composed of component models [10], [11]
where each component model represents a level of abstraction
for the system.

The PCS area, to be discussed in Section 3, uses a spatial
model in that the system is viewed as a hexagonal discretiza-
tion of a large two-dimensional space representing an area
where cellular communications are to be implemented. Spatial
models can be executed in several ways including time slicing,
event scheduling and parallel and distributed. Our approach
will be to use a parallel and distributed approach to model
execution, while using the concept of event scheduling within
each process. Speaking of process, we must define this term
appropriately. Model components for a PCS implementation
will be a collection of hexagonal cells. Other.model types,
such as a queuing model, are composed of other components
(facilities). A logical process (LP) is defined as a set containing
basic model components, so a PCS logical process will be a
set of hexagons, or just one hexagon. A physical process or
processor is a set of logical processes mapped in a way that
conforms to the architecture of the parallel/distributed system.

An LP contains several objects:

¢ Local Virtual Time (LVT): time associated with the LP.

The LP does not know another LP’s time unless commu-
nicated via a message.

* Future Event List (FEL): event list used when there are

internal events posted within the LP itself.

¢ Event: an item within the FEL.

* Message: an item sent from one LP to another.

The FEL is composed of events, where an event combines
the following objects: 1) time stamp, 2) token, 3) event type.
The time stamp reflects when the event is to occur. An
event’s occurrence correlates with the execution of an event
routine for that LP. The token is associated with whatever is
flowing through the network of LP’s. For the PCS application,
portables (i.e., mobile phones) flow through the system. An
event type specifies what will happen to the token (arrival,
boundary crossing, departure, incoming call). An LP has input
channels and output channels where each channel has a first-
inffirst-out (FIFO) buffer associated with it. A message is
equivalent to an event that must be moved from one LP

B2

to another. Messages which simply enter an FEL and are
processed are generally called events. When an event must be
issued to another LP, it becomes a message. The relationship
among the above terms is shown in Fig. 1.

Messages arrive in one of several input channel buffers and
are routed directly to the LP’s FEL. Note that simple LP’s may
involve a calculation such as 1) taking the timestamp from
an incoming message, 2) adding a value to this timestamp,
and 3) sending the new message to the output buffers. Such
an LP would not have any need of an FEL and would
be a “pure” distributed simulation. This kind of technique,
however, is wasteful of the computing elements since there

will be a large price to pay in communications overhead

among inter-LP communication. A simple addition is not
sufficient to warrant a distributed approach. On the other
hand, if the processing element can be made to do work
then the communications overhead becomes less critical. The
kind of work ideally suited in simulation is a sequential
simulation within the LP, composed of the usual FEL and
event routines. Thus, the distributed simulation is hybrid in
form with sequential simulation coinciding—and synchronized
with—distributed simulation. The LVT of this more substantial
LP is updated by removing the highest priority event (lowest
timestamp) from the FEL and executing the associated event
routine. Some (or all) of these event routines will contain
scheduling commands to place events with new times back
into the FEL. Some event routines will involve messages to
be issued through the output buffer(s) to a target LP.

B. Object Oriented Implementation

A PDES consists of several PDES objects or LP’s. These
LP’s execute asynchronously with coordination to complete
a simulation run. To implement the objects in an LP (as
described in Section II-A), the attributes and methods of the
LP are classified into four categories (see Table I):

* A clock mechanism indicates the progress of the LP.
An attribute LVT represents the timestamp of the event
that just occurred in the LP. The LVvTUpdate () method
updates LVT to advance the “clock” of the LP.

* A FEL mechanism processes the events occurring in
the LP. The FEL is basically a priority queue with one

LIN AND FISHWICK: ASYNCHRONOUS PARALLEL DISCRETE EVENT SIMULATION 399

TABLE I
ATTRIBUTES AND METHODS OF AN LP

Mechanism Attributes Methods

Clock LVT LVTUpdate()

FEL eventList Enqueune()
Dequeune()
Cancel()

Synchronization ReceiveMessage()
SendMessage()
ExecuteMessage()

Application to be elaborated | to be elaborated

attribute and three methods. An attribute eventList
maintains the events to occur in the future. The
Enqueue () method inserts a time-tagged event into
eventList so that eventList maintains its ordered
sequence. The Dequeue () method deletes the event
with the minimum timestamp in eventList. The
Cancel () method deletes the event with a specified
timestamp in eventList.

* A synchronization mechanism interacts with other

LP’s to coordinate the execution of PDES. The Re-
ceiveMessage() method receives messages from
other LP’s (these messages will be inserted into the
FEL for processing). The method ExecuteMessage ()
executes events in the FEL. The SendMessage()
method sends output message (generated by the execution
of events) to their destination LP’s.
It is probably more appropriate to consider Exe-
cuteMessage () as a method of the FEL. However,
this method is affected by the PDES synchronization
mechanisms to be described later. Thus the method is
classified as part of the synchronization mechanism.

¢ An application mechanism represents a sub-model for a
specific simulation application to be simulated by the LP
(to be elaborated).

C. PDES Implementation Platforms

PDES systems have been implemented in different paral-
lel architectures such as BBN Butterfly [12]-{14], Sequent
[15]-[17], JPL Mark HI [18], Simulated Stanford Dash Multi-
processor [19], Transputers [20], [21], CM-1/CM-5 [22], KSR
[23], and iPSC/860 [24]. PDES has also been implemented
in workstations connected by a local area network [4] which
is widely available in both the industrial and the academic
environments.

III. PERSONAL COMMUNICATION SERVICES

We use personal communication service (PCS) network
simulation to illustrate PDES functionality. A PCS network
[25], [26] provides low-power and high-quality wireless access
for PCS subscribers or portables. The service area of a PCS
network is populated with a number of radio ports. Every
radio port covers a sub-area or cell. The port is allocated a
number of channels (time slots, frequencies, spreading codes
or a combination of these). A portable occupies a channel
for an incoming/outgoing call. If all channels are busy in
the radio port, the call is blocked. In PCS network planning,

B3

PCS network modeling (usually conducted by simulation
experiments) is required to investigate the usage of radio
resources. Since PCS network simulation is time-consuming,
PDES effectively speeds up the process of PCS network
simulation. Specifically,

« The size of the PCS network under study is usually large
(e.g., thousands of cells). A typical sequential PCS sim-
ulation run takes over 20 hours, while the corresponding
PCS PDES takes less than 3 hours using 8 processors [4].

* Another popular parallel approach, the parallel indepen-
dent replicated simulation [27]-[29] (running multiple
simulation replications concurrently) does not work for
PCS simulation. In most cases, the PCS designer is
interested only in the behavior of the PCS network at
the engineered workload (e.g., the workload at which the
blocking probability is 1%). To calibrate the simulation
at the engineered workload, the setup of input parameters
for the next simulation run is dependent on the previous
run.

Now we describe the PCS model and its mapping to the
corresponding PDES. For demonstration purposes, we describe
a simplified PCS model without considering the details of the
radio signal propagation issues (such as Rayleigh fading, co-
channel interference, and so on). We assume that there arc
S cells in the PCS network, and on the average, there aic
n portables in a cell. Every port is allocated some number of
channels. A portable resides at a cell for a period of time whick
is a random variable with some distribution (e.g., exponentia:
{30]-[32]). Then the portable moves to a neighbor cell base:.
on some routing function (e.g., equal routing probabilities 1
all neighbors). The call arrivals to a portable is a random
process (e.g., Poisson), and is independent of the portabl
movement. A call is connected if a channel is availab:..
Otherwise, the call is blocked. When a portable moves fro::-
one cell to another while a call is in progress, the call require.
a new channel (in the new cell) to continue. This procedure -
changing channels is called handoff or automatic link transf-
(ALT). Several handoff schemes have been proposed in th:
literature [33]-[35]. In this paper, we consider the simplest
scheme called nonprioritized scheme. In this scheme, if nc
channel is available in the new cell, then the call will b
dropped or forced terminated immediately.

The PCS example is probably more realistic to the reader if
we add some geometry to these moving vehicles (portables;
Unfortunately, whether a vehicle moves from one cell to an-
other cannot be simply determined by the physical movement
of the vehicle. We also need to consider the radio propagation.
It is possible that the connection to a vehicle changes from one
port to another even if the vehicle is stationary—the change of
radio signal strength may result in re-connecting the vehicle to
a different port. According to the PCS network measurement
methods, we determine that the movement (in the sense of port
connection) of a vehicle is best characterized by the residence
time! distribution and the destination cell routing probability.
The reader may image that this movement model is equivalent
to a simple path approach where a vehicle moves straight with

I Residence time refers to the time that a portable resides within a cell.

400 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996

o Cells

(Hexagonal PCS Network Model)

Logical Processes

(Parallel Simulation Software)

<D=M Processors (Physical Processes)

(Multiprocessor Hardware)

Fig. 2. .Cclls. logical processes, and processors. A PCS cell is represented
by a logical process (LP) in PDES. More than one LP may be mapped to a
processor for execution.

an angle. The angle determines the destination cell and the
residence time is the product of a constant speed and the
diameter of the cell®.

To map the PCS model into PDES, the cells in the PCS
network are represented by cell objects derived from the PDES
objects (i.e., LP’s). These LP’s are then mapped to processors
for execution (see Fig. 2). A cell LP has the following
attributes and methods (i.e., the application mechanism of
a general LP): A constant attribute channelNo represents
the total number of channels in a radio port. An attribute
idleChannelNo represents the number of idle radio chan-
nels. A portableList collects the information of all porta-
bles reside in the cell. There are five methods in the cell object:
CallArrival(), CallCompletion(), Portable-
MoveIn(), PortableMoveOut(), and Handoff ().
These methods will be elaborated later.

The portables in the PCS network are represented by the
portable objects. A portable object consists of four attributes:

* The busy attribute indicates the status of the portable. If
busy=YES then the portable is in a conversation.

* The callArrivalTime attribute represents the next
call arrival time.

* The callCompletionTime attribute represents the
completion time of the current phone call when
busy=YES. If busy=NO, the callCompletionTime
attribute is meaningless.

* The portableMoveOutTime attribute represents the
time when the portable moves out of the current cell.
There are two categories of events in a PDES. An internal

event is scheduled and executed at the same LP (the event

2But note that our movement model is practical—it is used to approximate
real radio systems, unlike the simple path approach,

represents the interaction between a cell and a portable within
the cell in our PCS example), and an external event is
scheduled by one LP and is executed by another LP. Thus,
after its creation, an internal event is inserted in the FEL
by using the Enqueue () method, and an external event is
considered as a message, and is sent to the destination LP by
using the SendMessage () method. In the PCS PDES, there
are three internal event types and one external event type. The
internal event types are described below.

e CallArrival: Either the port (the cell) or the portable
initiates a call setup. A radio link is required to connect
the port and the portable. If no radio link is available or
the portable is already busy with another conversation,
the call is dropped.

e CallCompletion: A phone call completes, and the ra-
dio link between the port and the portable is disconnected.

* PortableMoveOut: The portable moves out of a cell.
If the portable is in a conversation, the radio link between
the portable and the port is disconnected.

We treat the CallArrival event type as an internally gen-
erated event based on a probability distribution. This is just an
abstraction of the actual situation where arrivals are sent from
outside the LP to one of the LP’s input channels. Therefore,
a more detailed simulation would involve “electromagnetic
messages” reflecting the true nature of incoming calls. The use
of a probability function is an abstraction for this underlying
process.

The external event type is described below.

e PortableMovelIn: A portable moves in a new cell. If
the portable is in a conversation, then a new radio link
between the cell (port) and the portable is required. If no
radio channel is available, the call is forced terminated.

In PDES, the execution of a PortableMoveOut event at

a logical process LP,4 always results in the scheduling of a

PortableMovelIn event for the destination logical process

LPg. This event type is external (to LPg), and the scheduling

of the event requires communication between LP4 and LPg.
An event/message m is of the format

m = (timeStamp, p, eventType)

where eventType represents the type of the event, timeStamp
represents the (simulated) time when the event occurs, and
p is the pointer which points to the corresponding portable
p. The execution of the event message m at a cell object
LP is described as follows. The LP. ExecuteMessage ()
method invokes different methods according to the event type
of m (the Pascal-like “case” statement is used in the definition
shown at the bottom of the next page). The methods invoked in
ExecuteMessage () are described below. When the event
type of m is CallArrival, the following action is taken.
CallAarrival(p) {
if p.busy=YES then
/* A call is already in progress when the new */
/* call arrives at LVT. In other words, a busy line */
/* occurs and the new call arrival is ignored. */
update the busy line statistic;
else /* 1.e., p.busy=NO. */

B4

- I

LIN AND FISHWICK: ASYNCHRONOUS PARALLEL DISCRETE EVENT SIMULATION 401

if idleChannelNo = 0 then
/* The call arrival is blocked. */
update the blocking statistic;
else /* Le., idleChannelNo> 0. */
idleChannelNo « idleChannelNo —1;
p.busy « YES;
generate the call holding time ¢, and
p.callCompletionTime — LVT +¢;
end if
end if
generate the next inter-call arrival time ¢’ and compute
the next call arrival time as
p.callArrivalTime « LVT + ¢,
invoke ScheduleNewEvent (p);
/* Schedule a new event (to be described). */
}
Note that the busy line and call blocking statistics are output
measures of the PCS simulation (not shown in our PDES
example)’.
When the event type of m is CallCompletion, the
following action is taken.
CallCompletion(p) {
/* Release occupied channel at call completion. */
idleChannelNo+—idleChannelNo+1;
p.busy=NO;
invoke ScheduleNewEvent (p);
/* Schedule a new event (to be described). */
}
When the event type of m is PortableMoveIn, the follow-
ing action is taken.
PortableMovelIn (p) {
if p.busy=YES then /* A handoff occurs. */
invoke Handoff (p); /* To be described. */
end if
generate the portable residence time ¢ and compute the
next move time p.portableMoveOutTime«— LVT+t;
invoke ScheduleNewEvent (p)
/* Schedule a new event (to be described). */
}
The method Handof£f () is described below.
Handoff (p) {
if idleChannelNo=0 then
/* No channel is available to connect the */
/* handoff call i.e., the handoff fails. */

3cain blocking is a major performance measure of a PCS network. A PCS
network is usually engineered at 1% or 2% blocking probabilities.

update the forced termination statistic
(not shown in our PDES example);
p.busy=NO;
else /* The handoff succeeds. */
idleChannelNo~— idleChannelNo-l;
end if
}
If the event type of m is PortableMoveOut, the following
action is taken.
PortableMoveOut (p) {
if p.busy=YES then
idleChannelNo+~idleChannelNo+l;
/¥ When a communicating portable moves */
/* to a new cell, it releases the occupied */
/* channel of the old cell. */
end if
determine the destination cell (LP’) to which the
portable moves;
generate an output message
m’ = (LVT, p,PortableMoveln);
invoke SendMessage (m/,LP’);
/* A PortableMoveln event is scheduled for LP’. */
}
Note that the timestamp of m’ is the same as that of m.

In our implementation, the execution of the event message
m results in the scheduling of exactly one future event
m’. When m is executed, one or more attributes of the
corresponding portable are updated. Then the next event for
the portable is determined based on the updated values of the
attributes. If the event type of m is PortableMoveOut,
then a PortableMovelIn event message with the same
timestamp is scheduled for the destination LP as described
in the definition of PortableMoveOut (). For the other
three event types, the message m’' = (ts,p, eventType') is
determined by invoking ScheduleNewEvent ():
ScheduleNewEvent (p) {

if p.busy=NO then

/* The portable is idle at LVT. The next */

/* event occurring to p is either a call arrival */

/* or a cell crossing movement. */

ts « min(p.callArrivalTime,
p.portableMoveOutTime);

if ts = p.callArrivalTime then
m'. eventType' —CallArrival;

else m'. eventType’ «—PortableMoveOut;

end if

ExecuteMessage (m) {
LVTUpdate(m. timeStamp)
/* Le., LVT— m.timeStamp. */
case (m. eventType) of
CallArrival: invoke CallArrival (m.p);

CallCompletion: invoke CallCompletion (m.p);

PortableMovelIn: invoke PortableMovelIn (m.p);

PortableMoveOut: invoke PortableMoveOut (m.p);
end case

} B5

402

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS~-PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996

Loe/

N
\

portable (cross-boundary) movement

Legend:

Fig. 3. A simple PCS example.

else /* Le., p.busy=YES. The portable is busy at */
/* LVT. The next event occurring to p is either a */

20 time

I 1

call arrival call completion

callCompletionTime = ?,
portableMoveOutTime = 16

/* call arrival, a call completion or a cell crossing */ and an event

/* movement. */

ts — min(p.callArrivalTime,
p.callCompletionTime,
p.portableMoveOutTime);

if ts =p.callArrivalTime then
m’.eventType’ —CallArrival;

else if s = p.callCompletionTime then
m’. eventType' —CallCompletion;

else m/. eventType’ —PortableMoveOut;

end if

end if

Consider the example illustrated in Fig. 3. In this figure,
a portable is represented by a car (although in many PCS
systems, portables are carried by pedestrians). A call arrival is
represented by a phone connected to the car. A call completion
is represented by a cross (disconnection) on the phone line.

At time 0, portable p; is at cell A. At time 10, a phone call
for p; occurs. The call completes at time 13, and the portable
moves to cell B at time 16. At time 20, another phone call
for p; arrives. At time 24, p; moves to cell C (and a handoff
occurs).

In PDES, cells A, B, and C are simulated by logical process
LP,, LPg, and LP¢ respectively. At the beginning of the
simulation, the attributes of p; are

busy = NO,
callArrivalTime = 10,

my = (10,5,,CallArrival)
is scheduled and inserted in the FEL of LP4. When the LVT
of LP4 advances to 10, m; is executed by invoking LPj,.
CallArrival (p;). Suppose that an idle channel exists. The
call is connected and the call holding time for the conversation
is generated (which is 3, or the call completion time is
10 4+ 3 = 13). The next call arrival time is also generated
(which is 20 in Fig. 3). Thus the attributes of p; are modified
as
busy = YES,
callArrivalTime = 20,
callCompletionTime = 13,
portableMoveQutTime = 16
and a new event

my = (13,51, CallCompletion)

is scheduled and inserted in LP,’s FEL. When the LVT of
LP,4 advances to 13, my is executed. The method LPj,.
CallCompletion(p;) is invoked and the attributes of p;
are modified as
busy = NO,
callArrivalTime = 20,
callCompletionTime =7,
portableMoveQutTime = 16
and a new event

m3 = (16,1, PortableMoveOut)

B6

LIN AND FISHWICK: ASYNCHRONOUS PARALLEL DISCRETE EVENT SIMULATION

403

@
Fig. 4. PDES synchronization problem.

®

is scheduled. At LVT 16, mj is executed. The method LP4.
PortableMoveOut (p;) is invoked to determine the desti-
nation cell (which is B in Fig. 3), and a message

my4 = (16, p1, PortableMoveln)

is sent from LP4 to LPg by invoking
LP,4.sendMessage(my, LPg). Note that the portable
p1 migrates to LPg when my is sent. (In GIT/Bellcore’s
PCS implementation [4], a message is part of a portable
object, and sending a message automatically migrates the
corresponding portable object.) When LPg’s LVT advances
to 16, it executes my. The next portable move time is
generated (which is 24). The attributes of p; are modified as
busy = NO,
callArrivalTime = 20,
callCompletionTime =7,
portableMoveOutTime = 24
and a new event ms = (20, 51, CallArrival) is scheduled.

A PDES is correct if the following rule is satisfied.

Local Causality Constraint Every LP processes events in
nondecreasing timestamp order.

The major problem of PDES is that the logical processes
are executed at different speeds. Consider the scenario in Fig.
4 that portable p; moves from cell A to cell B at time 20
with an ongoing phone call (i.e., a handoff call), and portable
p2 moves from cell C to cell B at time 13 with an ongoing
phone call (see Fig. 4(a)).

Consider the PDES scenario in Fig. 4(b). LP, sends a

PortableMoveln event (message) m; (for p;) with time-

stamp 20 to LPg. Later LP. sends my (for pp) with time-
stamp 13 to LPg. f LPg executes m; before m, arrives,
then the modifications to LPg. idleChannelNo is out of
the timestamp order, and the local causality rule is violated.
Thus the simulation result is not correct.

To solve this problem, the executions of the logical pro-
cesses must be synchronized. The remainder of this paper
describes two popular asynchronous synchronization mecha-
nisms, the conservative and tpe optimistic methods.

IV. CONSERVATIVE METHOD

The conservative simulation [36] is conservative in the sense
that it does not execute an event before it ensures that the local
causality rule is satisfied. The conservative simulation follows

Fig. 5. The input waiting rule. In (a), the number below a car represents the
time when the portable crosses the cell boundary.

two rules: the input waiting rule and the output waiting rule.
It also assumes that

* the messages are received in the order they are sent (the
FIFO communication property), and

* the communication channels among LP’s are fixed and
never change during the simulation. In Fig. 4(b), LP,
(LPc) has one output channel directed to LPg, and LPg
has two input channels (one from LP, and one from
LPe).

A. Basic Synchronization Mechanism

In a conservative simulation, every logical process LP
repeats the following two steps.

Step 1. LP waits to select an input message m from
its input channels (extra data structures are required to
implement input channels in a logical process) by invoking
LP ReceiveMessage (). This method is implemented
based on the input waiting rule to be described. The method
inserts m into LP’s FEL.

Step 2. Let t¢s be the timestamp of m.
LP ExecuteMessage() 1is invoked to process
all events in the FEL with timestamps no larger than ts in
nondecreasing timestamp order. The execution may invoke
LP.sendMessage() to send output messages. This
method is implemented based on the output waiting rule to
be described. If the termination condition is satisfied (e.g.,
LP.LVT>5000), then exit the loop. Otherwise go to Step 1.

The waiting rules are described as follows.

The Input Waiting Rule: An LP does not process any input
message until it has received at least one message from each
of its input channels. The input message with the smallest
timestamp is selected for processing. Fig. 5 shows how the
input message is selected for the PCS simulation.

Fig. 5(a) illustrates a PCS system where 6 portables
P1,P2,P3,Pa, D5, and pg move from cells B, C, D, E, F, and G
to cell A at times 30, 10, 26, 4, 12, and 14, respectively. In the
PDES model (see Fig. 5(b)), the PortableMovelIn events
of p1,..., pe are represented by the messages m1, ..., mg sent
to LP4. By the input waiting rule, m4 is the next message
to be executed in LP,.

Assume that all messages sent from one LP to another
are in nondecreasing timestamp order (this property will be

B7

404

P3 P2 P1 4] 1] P2
e Gy

iy iy by iy
30 20 10 36))
portable arrivals portabie departures
(@)
LVT: 0 LVT: 10
FEL: empty FEL: (w',29)
(m,30) (520 (me119) . (m330) (m520) .
Step 1. Before m, is processed Step 2. After m, is processed
VT30
- '324) (w'},29) FRL: (w’y36)
" 29 m",20)

Step 3. After m; is processed Step 4. After m; is processed

®)
Fig. 6. The output waiting rule.

guaranteed by the output waiting rule to be described next),
then the input waiting rule ensures that the timestamp of the
selected message is no larger than any input messages to be
processed in the future.

The Output Waiting Rule: An LP does not send an output
message to another LP until it ensures that no output messages
with smaller timestamps will be scheduled (at LP) in the future.
Assume that all input messages are handled in nondecreasing
timestamp order (the property is guaranteed by the input
waiting rule). The output waiting rule is satisfied if an LP
only sends output messages with timestamps no larger than its
current LVT value.

Consider the following PCS example. Portables p,, p2 and
p3 move into cell A at times 10, 20, and 30, and move out
of the cell at times 29, 24, and 36, respectively (see Fig.
6(a)). This situation occurs since a portable, once inside cell A,
may take a dramatically different from other portables. Some
portables may stay in the same physical location for a period
while other portables continue moving toward an adjacent cell
to A.

In PDES, m;, m2, and m3 are input messages representing
the arrivals of p;,p; and ps, respectively (see Step 1 in
Fig. 6(b)). When m; is processed, a move event m} for p;
is scheduled with timestamp 29 (see Step 2 in Fig. 6(b)).
In the conservative simulation, m} cannot be sent to the
destination LP immediately, or the output waiting rule may
be violated. In our PCS PDES implementation, the portable
move is simulated by two types of events: a Portable-
MoveOut event and a PortableMovelIn event. In Fig. 6(b),
m; and m! represent the PortableMoveOut event and
PortableMoveln event of portable p;, respectively. When
the event m;, is scheduled, it is inserted in LP4’s FEL. When
the LVT of LP,4 advances to the portable “move time” (i.e., the
timestamp of m!), m! is processed, which results in sending

B8

—

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996

LVT:
FEL:

LVT: 0
FEL: (m,8)

(@ ()

LVT: 0
FEL: (m8)
LVT: 0
FEL: empty
() @
LVT: 6
FEL, ooty FEL: empty
(m" 8) @
LVT: 0
FEL: (my,®) I..VT' 18
LVT: 12 FEL: empty
FEL: empty
LVT: 12
FEL: empty
(e) ®

Fig. 7. Deadlock and deadliock resolution.

the PortableMoveIn event m! (with the timestamp of m})
to the destination. In Fig. 6(b), m} and m/ are sent after Step
(3) and before Step (4); i.e., when LP4 is sure that next input
message to be handled has timestamp larger than m) and m),.
Note that m¥ is sent before m{ is.

Since the output waiting rule is guaranteed by using the
two “move” event types, the conservative SendMessage ()
method simply sends the output message to the destina-
tion. Note that for other applications, a different conservative
SendMessage () method may be required to implement the
output waiting rule.

The correctness of the conservative simulation can be
proved by induction on the interaction of the two waiting
rules.

B. Deadlock and Deadlock Avoidance

The input waiting rule may result in deadlock (LP’s are
waiting for input messages from each other and cannot
progress) even if the simulated system is deadlock free.

Consider a three-cell PCS network (see Fig. 7(a)).

There is one portable in the network, and the portable
moves in the path A —- B — C — A. At time 0,

LIN AND FISHWICK: ASYNCHRONOUS PARALLEL DISCRETE EVENT SIMULATION

the portable is in cell A. The portable moves form cell
A to cell B at time 8. In the conservative simulation, a
PortableMoveOut event m; is scheduled in LP4 initially
(see Fig. 7(b)). By the input waiting rule, LP,4 waits for an
input message from LPc before it can process m;. Simi-
larly, LPc does not send out any output message before it
receives an input message from LPp, and LPg does not
send out any output message before it receives an input
message from LP4 (i.e., before m, is processed). Thus the
PDES is in the deadlock situation. Two deadlock resolutions
have been proposed: deadlock avoidance [36] and deadlock
detection/recovery [37], [38]. It has been shown [39] that
the cost of deadlock detection/recovery is much higher than
deadlock avoidance. This article will focus on the deadlock
avoidance mechanism.

In a PCS network, a portable is expected to reside in a
cell for a period of time before it moves. Assume that every
portable resides in a cell for at least six time units before
it moves to a new cell. The information that “a portable
resides in a cell for at least 6 time units” is used in the
deadlock avoidance mechanism to predict when an LP will
receive an input message, and “6 time units” is referred as the
lookahead value. The lookahead information is carried by the
control messages called null messages. A null message does
not represent any event in the simulated system. Instead, it is
used to break deadlock as well as to improve the progress of
a conservative simulation.

In Fig. 7(b), at the beginning of PDES, the LVT’s of the
three LP’s are 0, and a PortableMoveOut event m; with
timestamp 8 is in LP4’s FEL. At time 0, LP4 sends a null
message with timestamp 0 + 6 = 6 (the LVT value plus the
lookahead value) to LPg (see Fig. 7(c)). The null message
implies that no portable will move in cell B earlier than time
6. Thus, the LVT of LPg advances to 6 when the null message
arrives (Fig. 7(d)). Since no portable arrives at cell B before
time 6, it implies that no portable will move out of cell B
before time 12 and LPg sends a null message with timestamp
12 to LPc. After the sending of several null messages, LP4
will eventually receive a null message with timestamp larger
than 8 (see Fig. 7(e)), and by the input and output waiting rules,
my is sent from LP4 to LPpg and the deadlock is avoided
(see Fig. 7(D).

C. Exploiting Lookahead

It is important to exploit the lookahead to improve the
progress of a conservative simulation. Experimental studies
have indicated that the larger the lookahead values, the better
the performance of the conservative simulation [39]. Based
on the techniques proposed in [40]-[42], we give three PCS
examples for lookahead exploration. The first two examples
assume single cell entrance and exit. The single entrance/exit
PCS model has been used in modeling highway cellular
phone systems [43]. The results can be easily generalized for
multiple entrances and exits. The techniques introduced can
be combined to exploit greater lookahead.

1. Lookahead Method 1 (FIFO): In a large scale PCS
network, a cell may only cover a street, and the portables

B9

405

leave the cell in the order they move in (the FIFO
property; see Fig. 8(a)).

Consider the corresponding FIFO LP for cell A in
PDES. The lookahead for the LP can be derived by
a presampling technique proposed by Nicol [41]. The
idea is to presample the residence times of the arrival
portables.

If the FEL is not empty, then the next departure time
can be easily computed. In the PCS PDES, the move-
out timestamp of a portable is computed and stored in
portableMoveOutTime of the portable object at the
time when the PortableMoveIn event is processed.
The FIFO property guarantees that the next departure
time is the minimum of the portableMoveOutTime
values of portable objects in the FEL. Thus, the precom-
puted next departure times can be used as the lookahead.
If the FEL of the LP is empty at timestamp LP.LVT,
then the lookahead can be generated by the same pre-
sampling technique. Since the portable will arrive at
the cell later than LP.LVT, it will leave the cell later
than LP.LVT+t (where t is the presampled portable
residence time). The FIFO property guarantees that after
time LP.LVT, no portables will depart earlier than
LP.LVT +t, and the LP may send null messages with
this timestamp to the downstream LP’s.

. Lookahead Method 2 (Minimum Inter-Boundary Cross-

ing Time): Consider the example in Fig. 8(b) where
the FIFO portable movement property in the previous
example does not hold. In practice, the inter arrival
times to the cell (for the portables from the same
entrance) cannot be arbitrary small. Instead, a minimum
cell crossing time 7 is assumed. Let p; (i =1,2,3,...)
be the ith portable arrival after time LP.LVT. The
portable residence time for p; is ¢;. Then the departure
time of p; is later than LP.LVT + (¢ — 1)7 + ¢;, and
the next departure time at the cell after LP-LVT is later
than LP.LVT + A where

A= 1£Ilgl<n°°[(z - D7+ t;]. (1)
Since 7 > 0, there exists j such that

it 2 lrgggj[(z -lr+t]=A.

In other words, to compute A it suffices to consider
the first j presampled residence timestamps in (1). Fig.
9 displays a situation where we employ formula (1).
Four portables arrive using times 10, 14, 19 and 22.
Let 7 = 3 so that we know that no two consecutive
portable arrivals will be less than 3. The residence
times for the portables are placed in parentheses in Fig.
9. The variable j is increased by 1 until the above
inequality is satisfied. Suppose that LP, needs to send
a null message to its downstream before it receives the
PortableMoveIn event for p;. The residence times
of the subsequent arriving portables are pre-samples as
t1 = 9ty = 4,t3 = 1,t4 = 5... Our algorithm
proceeds as follows:

(a) For j =1,1x 3 > min[0+9] =9 ? No.

() Forj=2,2x3>min[0+9,3+4] =77 No.

406 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996

P3 P2 1.J] P3 P2 Py
Gy Gy G L iy
portable arrivals portable departures
(a)
P2 P1
portable arrivals l—— t —
®)
Fig. 8. Examples for lookahead exploiting.
Pe p3 P2 P1)21 P3 P Pz
Gy Gy Gy Gy Gy G
22¢5) InD 144 1009) 27 20 19 13
portable arrivals portable departurss

Fig. 9. Portables entering and leaving cell A.

(c) For j =3,3x32>min[0+9,3+4,6+1] =7
? Yes.

From this procedure, we derive A = 7 by using the first

three pre-sampled residence times.

3. Lookahead Method 3 (Minimum Residence Time): If the
FIFO portable movement property does not preserve, and
7 does not exist (or is too small to be useful), then the
technique proposed in the previous example may not
work. In a PCS simulation, the total number N = S x n
of portables is an input parameter. To compute the next
lookahead value for an LP, it suffices to sample the next
N portable residence times, and (1) is re-written as [42]

A=

min ti
1<iKN

The last two examples may require a large number of opera-
tions to generate a lookahead value. In [40], O(1) algorithms
have been proposed to generate the lookahead values.

When the ExecuteMessage () method processes a null
message in an LP, it invokes a method ComputeLooka-
head () to compute the timestamp of the output (null) mes-
sages. The ComputeLookahead () method may implement
the lookahead exploiting techniques described above. Then the
new null message is sent to some or all output channels by
invoking the SendMessage () method.

V. OPTIMISTIC METHOD

The optimistic simulation [44] is optimistic in the sense that
it handles the arrival events aggressively. When a message m
arrives at an LP, LP.ReceiveMessage () simply inserts
m in the input queue (the optimistic simulation terminology
for the FEL). The logical process assumes that the events
already in its input queue are the “true” next events. The Exe-
cuteMessage () method proceeds to execute these events in

B10

timestamp order, and SendMessage () is invoked whenever

an output message is scheduled . When a message arrives at the

LP, the timestamp of the message may be less than some of the

events already executed. (This arrived message is referred to

as a straggler.) The optimism was unjustified, and therefore a

method Rollback () is invoked by ExecuteMessage () .
to cancel the erroneous computation. To support rollback, data

structures such as the state queue and the output queue are

required (to be elaborated).

Several strategies for cancelling incorrect computation were
surveyed by Fujimoto [45]. Two popular cancellation strategies
called aggressive cancellation [44) and lazy cancellation [46)
are described in this section.

A. Cancellation Strategies

Consider the example in Fig. 10. For simplicity, assume that
cell C has one radio channel (i.e., LPc.channelNo= 1 in
PDES). In this example, portable p, moves from cell B to cell
C at time 10 (event 1), and make a phone call at time 13. The
call is completed at time 21. Portable 1 moves from cell A to
cell C at time 16 (event 2), and attempts to make a phone call at
time 20. Since the only radio channel is used by portable 2, the
call attempt from portable 1 is blocked. Portable 1 moves from
cell C to cell D at time 24. Figs. 11, 12, and 13 illustrate the
data structures of LFPc (the logical process corresponding to
cell C) assuming that message m; (the message that represents
event 2) arrives at LP¢ earlier than message m; (the message
that represents event 1) does. In LPc, a state queue and an
output queue are maintained to supported rollback. In our
example, the state variable (attribute) for LP¢ is the number
of idle channels LPc.idleChannelNo. The state variable
is checkpointed and saved in the state queue from time to
time. The snapshots in the state queue are used to recover the
state of LPc when rollbacks occur. The output queue records
the anti-messages of the output messages that have been sent
from LPc. The anti-messages are used to annihilated false
messages sent in the incorrect computation.

In Fig. 11(a), LPc receives m; that is inserted in LP.’s
input queue. Initially, the output queue of LP. is empty,
and the value of LPz.idleChannelNo at timestamp O is
saved. After m; is executed, the system state at timestamp
16 is checkpointed, and a call arrival event (message m;)
is scheduled for LPc itself (see Fig. 11(b)). Note that after
its execution, m; is kept in the input queue (this message
may be re-executed if a rollback occurs). A pointer in the
input queue indicates the next event to be executed. The
anti-message m, of mgy is saved in LPc’s output queue.
The message m, is identical to my except that it includes
a destination field (in the original optimistic or Time Warp
algorithm [44], the sender and the destination are recorded in
both the output message and the corresponding anti-message
for flow control). To summarize, the ExecuteMessage ()
method for the optimistic simulation saves the system state
after an event execution (note that the state may be saved
after several event executions), and the executed event is not
deleted from the input queue. The SendMessage () method
saves the anti-messages in the output queue when it sends an
output message.

LIN AND FISHWICK: ASYNCHRONOUS PARALLEL DISCRETE EVENT SIMULATION

Portable 1

Portable 2

L 3

1 11

portable movement callarrival call completion call blocking

Fig. 10. A PCS example for optimistic PDES. Events 1 and 2 will be
represented by messages ms and my respectively in the optimistic PDES
(see the next figures).

DN
ESoC

timestamp |16 |\ 20

pointer portable Pi P
o] 122
m;
L
portable } 2] timestamp | o 16
event @ no.idlech. | 1 !
timestamp [, m’;
no.idlech. | 1 timestamp | 20
portable | P;
[]
1 all 1 destination |LPc
b --d
(@ ®)

Fig. 11. The data structures of LPc before/after rollback.

After mo is executed, the number of idle channel is decre-
mented by 1, and :
LPg.idleChannelNo = 0

is saved in the state queue. A PortableMoveOut event
mg is scheduled at timestamp 24, and its anti-message m3 is
stored in the output queue (see Fig. 12(a)).

B11

407

(@ ®
Fig. 12. The data structures of L Pc before/after rollback (cont.).

When mj is executed, a PortableMoveIn message my
is sent to LPp (see Fig. 12(b)). After my is sent, the straggler
ms (the event that p, moves in LPc at timestamp 10)
arrives. Since LPc.LVT= 24, the out-of-order execution is
detected (see Fig. 13(a)) by LPc.ReceiveMessage (), and
LPc.Rollback() is invoked. Two strategies for cancelling
incorrect computation are described below.

Aggressive Cancellation: 'When a straggler arrives, aggres-
sive cancellation assumes that the out-of-order computation, as
well as all other computations that may have been affected by
this computation are not correct. Thus, the out-of-order com-
putation is recomputed, and LPc.Rollback () cancels the
affected computations immediately by sending anti-messages.
In our example, a rollback of LPc at timestamp 10 occurs.
In Fig. 13(b), the anti-messages m, ,m3, and mg are deleted
from the output queue, and are sent to their destinations to
annihilate false messages mo, m3, and my, respectively. After
the rollback (see Fig. 13(c)), messages m2 and m3 (and my in
LPp) are removed from the input queue. The state of LP¢ at
timestamp O is re-stored. Then LPs.ExecuteMessage ()
resumes the simulation by executing ms.

Lazy Cancellation: 1tis possible that the erroneous compu-
tation still generated correct output messages. In that case, it is
not necessary to cancel the original message that was sent. In
lazy cancellation, logical processes do not immediately send
the anti-messages for any rolled back computation. Instead,
they wait to see if the reexecution of the computation causes
any of the same messages to be regenerated. If the same
message is recreated, there is no need to cancel the original.
Otherwise, an anti-message is sent. In our example, lazy
cancellation applies to three situations.

1) If portable p, arrives at cell C (LFP¢) at time 10 and
leaves cell C at time 28 without making any phone call

408 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996

(rgy—~(ur

pointer

06

Tuput Qucne

Y

" @ timestamp 1";5 \1 I”;I
@ g

2
d

portable pr| | Pt

oriabld |poriabid
event @ [~ |

State Quene

L

no. idle ch. 1

1
4

-
Output Querc ST
b --d

(@ () ©)
Fig. 13. The data structures of LPc before/after rollback (cont.).

——— phone conversation interval e residual time interval

A
real time
U3 e H i
PR I SR i T
P (poriablepy) | | B

24 28 yirtnal time (timestamp) in LP; el

10 16 2

(@)

1y mm (portabie p,)
012 416 2 23 24 virtual time (dmestamp) in LP,
®)
real time

[’ AEEEEEE ;n--nuuuu‘m"nnu-: (portable py)

mmnm (portable p))

Fig. 15. An PCS example for fossil collection in optimistic PDES.

10 1617 20 2 22 24 vitual time (timestamp) in LP;

<
Fig. 14. Situations when lazy cax:c:llation lies (in these situati in PDES, whether a call for p2 oceurs in the interval
t2> 11). app situations, [10], [28] can be detected in the portable object.) Thus
messages m), mo, and m3 do not need to be reexecuted
(see Fig. 14(a)) then the arrival of mg in Fig. 13(a) will after ms is executed. This is called jump forward or
not affect the executions of m,, m2, and m3. (Note that lazy reevaluation [1).

B12

LIN AND FISHWICK: ASYNCHRONOUS PARALLEL DISCRETE EVENT SIMULATION 409

D)
pointer

Topat Qe
= Topat Qe
my

pointer

m m
timestamp |1 N 156 N 207

A b Eel porable | Ps | | Ps | | P3
vent 5
Ntate (j;uuz

timestamp 0o N1

move-in count | o 0

Nterte (i

timestamp 0 1
move-in count | o]

‘7
N
prad
- N
..im

e
oy
W

(rutpur Qrend

(rerpriet A et

m my [10}, | m°s . .

timestamp (1 - 7 8 60 il \ [

timestamp {15 |V 15

riable P P1

po el LES w;u portable | ps | | Ps
event 2] el — s b
destination |LP, LP, LP, LP, event -l el
B (51 el 2 bl destination |LPy| |LP.

Input Ouein ‘

mg | | my mlak "llz\ my - P
timestamp |4 N IN7 N7 |\ - !
timestamp
portable Pr||Ps PaffP2]| 1 Ps 71
v] caa poriable o
event |2
sncin. (%
timestamp 10 N|4 7
move-in count | o o |Y
Fig. 16. The optimistic PDES before fossil collection.
In this case, L Pc.ReceiveMessage () simply inserts If lazy cancellation does succeed most of the time, then

2)

ms in the input queue, and the pointer of the input queue the performance of the optimistic simulation is improved
points to ms. LPc.ExecuteMessage () executes ms by eliminating the cost of cancelling the computation which
and the pointer jumps directly after mz without re- would have to be reexecuted. If lazy cancellation fails, then
executing m;, mg, and mg. the performance degrades, because erroneous computations are
The call for p, does not block the call for p; if po’s not cancelled as early as possible. In our PCS simulation, we
call completes before p;’s call arrives (see Fig. 14(b)) may exploit situations that lazy cancellation does not fail (as
or p2’s call overlaps p;’s call but LPc has two or described above), and a logical process can be switched be-
more radio channels (i.e., LP.channelNo> 2; see Fig. tween aggressive cancellation and lazy cancellation to reduce
14(c)). In these cases, the channel utilization (not shown the rollback cost.

as a state variable in our example) changes, but the

subsequent messages (i.e., ma, m3, and my) scheduled B- Memory Management

due to the execution of m, are not affected. Thus, To support rollback, it is necessary to save the “history”
messages m1, Mg, and m3 are re-executed to reflected (the already executed elements in the input, the output, and
the correct channel utilization. No anti-messages need the state queues) of a logical process. However, it may not
to be sent (i.e., my,m;, and m are not sent out). be practical to save the whole history of a logical process
Like the previous case, LPc.ReceiveMessage() because memory is likely to be exhausted before the simulation
simply inserts ms in the input queue. After ms has completes. Thus, it is important that we only save “recent
been executed, LPc.ExecuteMessage () will re- history” of logical processes to reduce the memory usage.
execute mi;,m;, and mj without re-generating any Memory management for the optimistic simulation is based
output messages. on the concept of global virtual time (GVT). The GVT at

BI3

410 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996

po inter poimer poi’lte r
¢
m3{|my mg \ | M7 ™
timestamp |8 60 15 20
portable P4 P Ps P3 !

borabid poriabld portabl
event [mare]| [move] EEH’

State Quenc

15 7

timestamp [5) 1
1
move-in count | 1 |

(Ditprt Quen

m” 1ol | m 4 mg \Im'u -
V aull 1
timestamp 8 60 15 15 tmma
rtable | P4] | P! Ps Ps
pe | Fd | move move w
event |Wr | Bk ow | |ia
destination |LPc| |LPa LPs| |LPc

Fig. 17. The optimistic PDES after fossil collection.

(execution) time ¢ is the minimum of the timestamps of the not-
yet executed messages (these messages are either in the input
queue or are in transit) in the optimistic simulation at time ¢.
(Several other operational definition of GVT are given in [47],
[48].) It has been pointed out [44] that at any given time ¢,
a logical process cannot be rolled back to a timestamp earlier
than the GVT at ¢. Therefore the storage for all messages with
timestamps smaller than the GVT value can be reclaimed for
other usage. The process of reclaiming the storage for the
obsolete elements is called fossil collection.

The GVT computation is not trivial in a distributed system
because it may be difficult to capture the messages in transit.
Several GVT algorithms have been developed in the systems
with the FIFO communication property [49] or without the
FIFO communication property [50], [51].

In GIT/Bellcore PCS PDES (where eight workstations are
connected by a local area network), all logical processes
are frozen during GVT computation. By utilizing the low
level communication mechanism, all transient messages are
guaranteed to arrive at their destinations before the GVT
computation starts. The fossil collection procedure works as
follows. A coordinator initiates the procedure by freezing the
execution of every logical process. After all transient messages
arrive at their destinations, every logical process reports its
local minimum value (the minimum of the timestamps of all
unprocessed messages in the input queue) to the coordinator.
The coordinator then compute the GVT value as the minimum
of the received local minimums. The GVT value is broadcast
to all logical processes for fossil collection.

To illustrate the storage reclaimed in fossil collection,
consider the example in Fig. 15. In this example, we ignore
the phone call events and assume that all Portable-

Bl4

MoveIn/PortableMoveOut events must be executed in
their timestamp order in the optimistic simulation. We further
assume that the state variable of a logical process is the
number of portables move in the corresponding cell after time
0. Portable 1 moves from cell C to cell A at time 4 and moves
from cell A to cell B at time 60. Portable 2 moves from cell
C to cell B at time 10. Portable 3 moves from cell B to cell
A at time 20. Portable 4 moves from cell A to cell C at time
8. Portable 5 moves from cell A to cell C at time 7. Portable
6 moves from cell A to cell B at time 1 and moves from cell
B to cell C at time 15.

Fig. 16 illustrates the elements in the input/output/state
queues of LP4, LPg, and LPc after all transient messages
arrive at their destinations, and the GVT value (which is
8 = min(60, 20, 8)) is found.

Fig. 17 illustrates the elements in the input/output/state
queues of LP4,LPg, and LPc- after the fossil collection
procedure is completed.

All messages with timestamps smaller than 8 were fossil
collected. Note that fossil collection for the state queue is not
exact the same as that for the input/output queues. In the state
queue, the element with the largest timestamp smaller than the
GVT value (i.e., 8) must not be removed (see Fig. 17). The
other elements with timestamps smaller than 8 are removed.

C. Performance Evaluation

The performance of an optimistic PCS PDES implementa-
tion has been investigated in [4]. In this study, a version of
Time Warp has been developed that executes on 8 DEC 5000
workstations connected by an Ethernet.

In the experiments, speedp was used as the output measure
where the sequential simulator used the same priority queue

LIN AND FISHWICK: ASYNCHRONOUS PARALLEL DISCRETE EVENT SIMULATION 411

8
7 —
6

S .

p 5q

S 4

d

u 3

p o: the mean ce]] residence time = 15 minutes
2+ o the mean cell residence time = 43 minutes
1 o: the mean cell residence time = 75 minutes
0 i { T 1

5 10 15 20 25 30
(2)

>4

B 51

e 1

d

u 3

p o: the mean cell residence time = 135 minutes
2+ o: the mean cell residence time = 45 minutes
. o: the mean cell residence time = 75 minutes
0 I I I 1

5 10 15 20 25 30

®

Fig. 18. Speedup of the optimistic PDES (The call holding time is exponen-
tially distributed with mean 3 min. Eight processors are used in the parallel
simulation.) The expected number of portables per cell is 50 in (a), and 75
in (b).

mechanism as that of PDES for managing the pending set of
events, but did not have the state saving, rollback and fossil
collection overheads associated with the PDES implementa-
tion. The 1024 cells are simulated for 2.5 x 10° simulated
seconds. Fig. 18 shows the performance of the optimistic
PDES. The figure indicates good performance of PDES for
the PCS application. PDES is particularly efficient when the
number of portables is large, the cell residence time is long,
and the call interarrival time is short.

VI. FUTURE DIRECTIONS FOR PDES

This paper describes the asynchronous parallel discrete
event simulation (PDES) mechanisms and optimization tech-
niques by examples of personal communications services
(PCS) network simulation. We described the conservative and
the optimistic PDES mechanisms and several optimizations
tailored for the PCS simulation. The performance of the op-
timistic method was briefly discussed. Since the conservative
optimizations (tailored for PCS) introduced in this paper are
new and were not previously reported, no performance studies
have been conducted. Investigating the performance of these
optimizations will be one of our future research directions.

The optimization techniques described in the paper are
general and apply to other simulation applications such as
battlefield simulation, VLSI simulation, queueing network
simulation and computer architecture simulation. However,

these optimization techniques may need to be tailored for
specific applications. Many studies have devoted to this issue
(see [1], [2], [52]-[54] and references therein). The PCS
example can be seen as being a member of a larger class of
simulation model where one first discretizes the spatial domain
into a grid, and then simulates moving entities from one grid
cell to another. In this sense, the PCS problem is isomorphic
to the problems of particle/n-body simulation.

An important research direction that has not been fully
exploited is the building of user-friendly PDES environments.
Such an environment should provides convenient tools to
develop simulation application. Methods should also be pro-
vided to tailor general optimization techniques to fit a specific
simulation application. We anticipate that these user-friendly
environments can be constructed by the object-oriented models
described in [6].

ACKNOWLEDGMENT

C. Carothers and Y. C. Wong provided useful comments to
improve the quality of this paper.

REFERENCES

[1} R. M. Fujimoto, “Parallel discrete event simulation,” Comm. ACM, vol,
33, no. 10, pp. 31-53, Oct. 1990.

(2} D. M. Nicol and R. M. Fujimoto, “Parallel simulation today,” Ann. Oper.
Res., vol. 53, pp. 249-~286, Dec. 1994.

{3] R. Richter and J. C. Walrand, “Distributed simulation of discrete event
systems,” in Proc. IEEE, Jan. 1989, vol. 77, no. 1, pp. 99-113.

[4] C. Carothers, R. M. Fujimoto, Y.-B. Lin, and P. England, “Distributed
simulation of PCS networks using time warp,” in Proc. Int. Workshop on
Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, 1994, pp. 2-7.

(5] C. Carothers, Y.-B. Lin, and R. M. Fujimoto, “A re-dial model for
personal communications services network,” to appear in 45th Vehicular
Technology Conf., 1995.

[6] P. A. Fishwick, Simulation Model Design and Execution: Building
Digital Worlds. Englewood Cliffs, NJ: Prentice Hall, 1995,

[7] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Engle-
wood Cliffs, NJ: Prentice-Hall, 1981.

[8] A.M. Law and D. W. Kelton, Simulation Modeling & Analysis, 2nd ed.

New York: McGraw Hill, 1991.

T. Toffoli and N. Margolus, Cellular Automata Machines: A New

Environment for Modeling, 2d ed. Cambridge, MA: MIT Press, 1987.

[10] P. A. Fishwick and B. P. Zeigler, “A multimodel methodology for qual-
itative model engineering,” ACM Trans. Modeling Comp. Simulation,
vol. 2, no. 1, pp. 52-81, 1992.

[11] P. A. Fishwick, “A simulation environment for multimodeling,” Discrete
Event Dyn. Syst.: Theory Appl., vol. 3, pp. 151-171, 1993.

[12] M. Ebling, M. Di Loreto, M. Presley, F. Wieland, and D. Jefferson, “An
ant foraging model implemented on the time warp operating system,”
in Proc. 1991 SCS Multiconf. on Distributed Simulation, Mar. 1991, Pp-
21-26.

[13] P. Hontalas, B. Beckman, M. Diloreto, L. Blume, F. Reiher, K. Sturde-
vant, L. Warren, J. Wedel, F. Wieland, and D. Jefferson, “Performance
of the colliding pucks simulation on the time warp operating systems
(Part 1: Asynchronous behavior & sectoring),” in Proc. 1989 SCS
Multiconference on Distributed Simulation, Mar. 1989, pp. 3-7.

{14] R. M. Fujimoto, “Time warp on a shared memory multiprocessor,” in
Proc. 1989 Int. Conf. on Parallel Processing, Aug. 1989, vol. III, pp-
242--249.

(151 R. Ayani and H. Rajaei, “Parallel simulation of a generalized cube
multistage interconnection network,” in Proc. 1990 SCS Multiconference
on Distributed Simulation, Jan. 1990, pp. 60-63.

[16] G. S. Thomas and J. Zahorjan, “Parallel simulation of performance Petri
Net: Extending the domain of parallel simulation,” in Proc. 199] Winter
Simulation Conf., 1991, pp. 564-573.

{17] D. A. Reed and A. Malony, “Parallel discrete event simulation: The
Chandy-Misra approach,” in Proc. 1988 SCS Multiconf. on Distributed
Simulation, Feb. 1988, pp. 8-13.

9

—

B15

412 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996

[18] E. Wieland, L. Hawley, A. Feinberg, M. Di Loreto, L. Blume, P. Reiher,
B. Beckman, P. Hontalas, S. Bellenot, and D. Jefferson, “Distributed
combat simulation and time warp: The model and its performance,” in
Proc. 1989 SCS Multiconf. on Distributed Simulation, Mar. 1989, pp.
14-20.

L. Soule and A. Gupta, “An evaluation of the Chandy-Misra-Bryant
algorithm for digital logic simulation,” ACM Trans. Modeling Comp.
Simular., vol. 1, no. 4, pp. 308-347, 1991.

D. Beazner, G. Lomow, and B. Unger, “A parallel simulation environ-
ment based on time warp,” to appear in Int. J. Comp. Sim., 1995.

S. Turner and M. Xu, “Performance evaluation of the bounded time warp
algorithm,” The 6th Workshop on Parallel and Distributed Simulation,
1992.

B. Lubachevsky, “Efficient distributed event-driven simulations of
multiple-loop networks,” Comm. ACM, vol. 21, no. 2, Mar. 1989,

K. Ghosh, K. Panesar, R. M. Fujimoto, and K. Schwan, “PORTS:
A parallel, optimistic, real-time simulator,” in Proc. 8th Workshop on
Farallel and Distributed Simulation, 1994.

G. Gaujal, A. G. Greenberg, and D. M. Nicol, “A sweep algorithm for
massively parallel simulation of circuit-switched networks,” J. Parallel
and Distributed Computing, vol. 18, no. 4, pp- 484500, 1993,

D. C. Cox, “Personal communications—A viewpoint,” IEEE Commun.
Mag., vol. 128, no. 11, pp. 8-20, 1990.

» “A radio system proposal for widespread low-power tetherless
communications,” IEEE Trans. Commun., vol. 39, no. 2, pp. 324-335,
Feb. 1991.

P. W. Glynn and P. Heidelberger, “Analysis of initial transient deletion
for parallel steady-state simulation,” SIAM J. Scien. Siat. Comp., vol.
13, no. 4, pp. 904-922, 1992.

P. Heidelberger, “Discrete event simulations and paralle]l processing:
Statistical properties,” SIAM J. Scien. Star, Comp., vol. 9, no. 6, pp.
1114-1132, Nov. 1988.

Y.-B. Lin, “Parallel independent replicated simulation on a network of
workstations,” Simulation, vol. 64, no. 2, pp. 102-110, 1995.

W. C. Wong, “Packet reservation multiple access in a metropolitan
microcellular radio environment,” IEEE J. Select. Areas Commun., vol.
11, no. 6, pp. 918-925, 1993,

» “Dynamic allocation of packet reservation multiple access
carriers,” IEEE Trans. Veh. Technol., vol. 42, no. 4, 1993.

Y.-B. Lin, “Determining the user locations for personal communications
networks,” IEEE Trans. Veh. Technol., vol. 43, no. 3, pp. 466-473, 1994.
Y.-B. Lin, S. Mohan, and A. Noerpel, “Sub-rating channel assignment
strategy for PCS hand-offs,” IEEE Trans. Veh. Technol., vol. 45, no. 1,
pp- 122-130, 1996.

» “Queueing priority channel assignment strategies for handoff
and initial access for a PCS network,” IEEE Trans. Veh. Technol., vol.
43, no. 3, pp. 704-712, 1994.

Y.-B. Lin, A. Noerpel, and D. Harasty, “Sub-rating channel assignment
strategy for hand-offs,” to appear in IEEE Trans. Veh. Technol., 1995.
K. M. Chandy and J. Misra, “Distributed simulation: A case study in
design and verification of distributed programs,” IEEE Trans. Software
Eng., vol. SE-5, no. 5, pp. 440452, Sept. 1979.

K. M. Chandy and J. Misra, “Asynchronous distributed simulation via
a sequence of parallel computations,” Comm. ACM, vol. 24, no. 11, pp.
198-206, Apr. 1981.

J. Misra, “Distributed discrete-event simulation,” Comp. Surveys, vol.
18, no. 1, pp. 39-65, Mar. 1986.

R. M. Fujimoto, “Performance measurements of distributed simulation
strategies,” in Proc. 1988 SCS Multiconf. on Distributed Simulation, Feb.
1988, pp. 14-20.

Y.-B. Lin and E. D. Lazowska, “Exploiting lookahead in parallel
simulation,” IEEE Trans. Parallel Distrib. Syst., vol. 1, no. 4, pp.
457-469, Oct. 1990.

D. M. Nicol, “Parallel discrete-event simulation of FCFS stochastic
queueing networks,” in Proc. ACM SIGPLAN Symp. on Parallel Pro-
gramming: Experience with Applications, Languages and Systems, 1988,
pp. 124-137.

D. B. Wagner and E. D. Lazowska, “Parallel simulation of queueing
networks: Limitations and potentials,” in Proc. 1989 ACM SIGMETRICS
and Performance '89 Conf., 1989, pp. 146-155.

8. S. Kuek and W. C. Wong, “Ordered dynamic channel assignment
scheme with reassignment in highway microcells,” IEEE Trans. Veh.
Technol., vol. 41, no. 3, pp. 271-277, 1992.

D. Jefferson, “Virtual time,” ACM Trans. Progr. Lang. Syst., vol. 7, no.
3, pp. 404-425, July 1985.

R. M. Fujimoto, “Optimistic approaches to parallel discrete event
simulation,” Trans. Soc. Comp. Sim., vol. 7, no. 2, pp. 153-191, June

(19]

[20]
[21]

(22]
[23]

f24]

[25]
[26]

(271

[28]

(29
(30]

B31]

(32}
[33]

(34]

[35]
(36]

373

(381
391

[40]

[41]

[42]

{431

[44

—

[45]

1990.

[46] A. Gafni, “Rollback mechanisms for optimistic distributed simulation,”
in Proc. 1988 SCS Multiconf. on Distributed Simulation, Feb. 1988, pp.
61-67.

[47] D. Jefferson, “Virtual time II: The cancelback protocol for storage

management in time warp,” in Proc. 9th Ann. ACM Symp. on Principles

of Distributed Computing, Aug. 1990, pp. 75-90.

Y.-B. Lin, “Memory management algorithms for parallel simulation,”

Information Sciences, vol. 77, no. 1, pp. 119-140, 1994.

» “Determining the global progress of parallel simulation,” Inform.

Proc. Let., vol. 50, 1994,

B. Samadi, “Distributed simulation, algorithms and performance analy-

sis,” Ph.D. Dissertation, Dept. Computer Science, Univ. of California,

Los Angeles, 1985.

F. Mattern, “Efficient distributed snapshots and global virtual time

algorithms for non-FIFO systems,” J. Parallel Distrib. Comp., vol. 18,

no. 4, pp. 423434, 1993. ’

[52] R. M. Fujimoto, “Parallel discrete event simulation: Will the field

survive?,” ORSA J. Computing, vol. 5, no. 3, 1993.

D. Arvind, R. Bagrodia, and Y.-B Lin (Eds.), in Proc. 8th Workshop on

Parallel and Distributed Simulation, ACM, 1994,

[54] M. Bailey and Y.-B. Lin, Eds., in Proc. 9th Workshop on Parallel and
Distributed Simulation, ACM, 1995.

(48]

[49]
[50]

(51

(53]

Yi-Bing Lin received the B.S.E.E. degree from
National Cheng Kung University in 1983, and
the Ph.D. degree in computer science from the
University of Washington, Seattle, in 1990,

Between 1990 and 1995, he was with the Applied
Research Area, Bell Communications Research
(Belicore), Morristown, NJ. In 1995, he was
appointed full professor, Department and Institute
of Computer Science and Information Engineering,
National Chiao Tung University, Hsinchu, Taiwan.
; His current research interests include design and
analysis of personal communications services network, distributed simulation,
and performance modeling.

Dr. Lin is a subject area editor of the Journal of Parallel and Distributed
Computing, an associate editor of the International Journal in Computer
Simulation, an associate editor of SIMULATION, a member of the editorial
board of International Journal of Communications, a member of the editorial
board of Computer Simulation Modeling and Analysis, Program Co-Chair for
the 8th Workshop on Distributed and Parallel Simulation, and General Chair
for the 9th Workshop on Distributed and Parallel Simulation.

Paul A. Fishwick (M’87-SM’92) received the B.S.
degree in mathematics from the Pennsylvania State
University, University Park, the M.S. degree in
applied science from the College of William and
Mary, Williamsburg, VA, and the Ph.D. degree
in computer and information science from the
University of Pennsylvania, Philadelphia, in 1986.

He is an associate professor, Department of
Computer and Information Sciences, University
of Florida, Gainesville. He also has six years

' of industrial/government production and research
experience working at Newport News Shipbuilding and Dry Dock Co. (doing
CAD/CAM parts definition research), and at NASA Langley Research Center
(studying engineering data base models for structural engineering). His
research interests are in computer simulation modeling and analysis methods
for complex systems.

Dr. Fishwick is a senior member of the Society for Computer Simulation.
He is also a member of the IEEE Systems, Man and Cybernetics Society, the
ACM and AAAL He founded the comp. simulation Internet news group
(Simulation Digest) in 1987, which now serves over 15,000 subscribers.
He was chairman of the IEEE Computer Society technical committee on
simulation (TCSIM) in 1988 and 1990, and he is on the editorial boards of
several journals including the ACM Transactions on Modeling and Computer
Simulation, the IEEE TRANSACTIONS ON SYSTEMs, MAN AND CYBERNETICS,
The Transactions of the Society for Computer Simulation, the International
Journal of Computer Simulation, and the Journal of Systems Engineering.

B16

Improved Decision Making through Simulation Based Planning

Paul A. Fishwick, Gyooseok Kim, Jin Joo Lee
Computer and Information Science and Engineering Department
University of Florida

Abstract

Real-time military planning and decision making involves several different mod-
eling techniques, including rule-based, operator-based and dynamic-model based ap-
proaches. While rule-based approaches are generally fast and are more appropriate
for simple scenarios, simulation methods and dynamic models, indigenous to the sim-
ulation literature, are necessary to plan within environments involving large-scale un-
certainty, multiple interacting elements and complex dynamics. Planning techniques
must inter-operate to yield the best decisions, and we have found that simulation based
planning serves as an architecture for detailed model levels for both real-time and off-
line decision making. We introduce Simulation Based Planning as a methodology for
addressing the complexity involved in Air Force missions while employing an example
of air interdiction.

1 Introduction

Decision making and planning are critical operations for all military missions. Moreover,
planning occurs over several different time scales depending on the amount of time that one
has to plan prior to committing to a particular plan. Planning is a hierarchical enterprise
since many techniques can be used to determine near-optimal plans. For example, if one has
information on costs between events during a mission, and the goal is to minimize cost, then
a mathematical programming approach, based on lowest cost path determination, may yield
satisfactory results. An even higher level type of planning is possible by using heuristics in
the form of operators and rules [Fikes 72]. Rules can use certainty factors or fuzzy sets.

Our long-term goal is to explore this hierarchy of planning approaches, and our first step
toward this goal is to provide high level planners with a technique we call Simulation Based
Planning (SBP). Military missions involve many interacting elements including concurrently
active adversarial tasks and uncertain information regarding ground-based anti-aircraft ca-
pability. As the complexity of a mission and knowledge-base increases, it is valuable to use
computer simulation and more detailed dynamic models to obtain an answer to the broad
question “Which is the best approach to take given our mission and all currently available
knowledge'?” A good method for answering this question is to use simulation since the
simulation technique is generally useful for obtaining answers to “what if” scenarios. The
quality of the answer depends on how much time is available prior to committing to the plan.
If more time is available, more simulation experiments can be executed in real time. If time
is of the essence, higher level models will need to be simulated. In any event, our goal is to
plan using the most detailed dynamic models available rather than to limit all planning to
the use of a singular planning technique such as a decision tree.

!Where the knowledge about the terrain, enemy unit motions and postulated enemy plans incorporate a
great deal of uncertainty and can change over time.

C1

Our contribution in the area of planning is to develop a method that allows simulation to
be used in real-time, where the simulation is embedded within the decision making system.
Consider a simulation system that manages force engagements up to the battalion level.
CASTFOREM [CASTFOREM 96] provides one such modeling capability [Wargames 96].
CASTFOREM is driven by decision trees and rules to guide what actions occur at any given
time. For interactive graphical output on the state of units, JANUS [Janus 96] can be used.
Our goal to to allow a program such as CASTFOREM the ability to make decisions based,
not on rules or decision tables, but on multiple simulations that are run within the overall
stmulation. Typically, simulation has been used widely in the military for offline decision
analysis and “what if” weapons effectiveness assessment. Our proposal suggests that we
enable simulation to support “course of action” (COA) analysis, and embed it directly within
the force simulation. The approach yields a two-level simulation procedure: simulations for
COA analysis guiding the decisions that drive the simulation of units, platoons, companies
and battalions. This “simulation within a simulation” approach is novel, but it can be time
consuming. For that reason, our work stresses the use of multi-level models so that different
aggregation levels can be executed so that the planning can be performed with real-time
constraints.

Planning, regardless of the specific domain, involves three components: 1) model type,
2) plan set, 3) plan evaluation. The first step in planning is to determine the modeling
language (or type) to use. For rule-based approaches, this language can be “rules” or “pred-
icate logic.” For other approaches, there are many alternatives: equation sets, finite state
automata, Petri nets, functional block models, queuing models. Often the model type is
visual in structure [Fishwick 95]. The next step is to create a set of candidate plans. For
rules, this set is often created through backward chaining. For more detailed model types,
the set is created by creating an experimental design and performing simulation (i.e., a type
of forward chaining). Plan evaluation is the key step where elements in the plan set are
simulated to determine the best plan(s). For our purposes, we view all modeling approaches
as being definable hierarchically, so that model types can include both rules and detailed
queuing models, for instance, defined at different abstraction levels. These hierarchical model
types are termed multimodels [Fishwick 95).

We will first discuss the application of simulation-based planning in Section 2: air inter-
diction. Then, we define the method of simulation-based planning, and finally we illustrate
our prototype simulation application which serves as an aid to plan interdiction missions.
In Section 3, we focus on route planning using a low-level strike mission on a munitions
factory. Information on the implementation is included in Section 4, followed by conclusions
in Section 5.

2 Air Interdiction

A typical use of the application of force is air interdiction, where the purpose is to de-
stroy, delay, or disrupt existing enemy surface forces while they are far from friendly surface
forces [Drew 92]. The interdiction mission includes attacks against supplies and lines of
communication. The objective of the interdiction mission is to reduce the enemy threat by
diminishing enemy combat effectiveness or by preventing a buildup of combat capabilities.

C2

To achieve this objective, careful and comprehensive planning is required to isolate an area
- and to stop all support from reaching the theatre of conflict. One must systematically attack
the significant elements of the enemy’s logistical structures (transportation lines and cen-
ters, supply depots and storage facilities, repair and modification centers, staging areas, and
industrial installations) and maintain a high degree of destruction until the desired effect is
achieved.

There are two levels of the interdiction plan : the interdiction plan at the theatre level
and at the tactical air force level [AFM 1-7 54]. A theatre interdiction plan establishes the
general scheme of employment, and enumerates available forces by type and number. The
plan also outlines logistical support, delineates force responsibility, establishes the general
system of targets, prescribes the priority of target systems, and describes the anticipated
results. A theatre-level plan is developed through tactical air force planning. This planning
involves the day-to-day conduct of operations for the implementation of the assigned portion
of the broad theatre interdiction task. It covers specific and detailed actions of the forces
to be employed. A large part of the mission is dependent on which particular route or air
corridor is used.

The task of the attack aircraft is to strike the target swiftly and accurately with whatever
munitions are carried, and then to return safely to base. To carry out this task, we must pen-
etrate the enemy defense. Most difficulties arise here because methods of penetrating enemy
defenses can vary according to the strength and sophistication of the hostile detection, re-
porting, command and control network, and how much intelligence is available on the nature
of the defense capability [Spick 87]. Mission planning will also involve maintaining a balance
between fuel and munitions resources to determine the load to be carried. Considering these
constraints, selecting the best routes can be a complex undertaking.

2.1 Simulation Based Planning (SBP)

SBP refers to the use of computer simulation [Law 91, Fishwick 95] to aid in the decision
making process. In much the same way that adversarial trees are employed for determining
the best course of action in board games, SBP uses the same basic iterative approach where
a model of an action is executed to determine the efficiency of an input or control decision
within the given situation. However, board game trees implement a static position evaluation
function whereas, in SBP, a model (serving as a dynamic evaluation structure) is executed to
determine the effects of making a “move.” With the ability to simulate models at different
abstraction levels, SBP executes detailed models of a physical phenomenon when there is
sufficient planning time, or when fast computation and parallel methods are instrumented.
The military has been using simulation-based planning for many decades in the form of
constructive model simulation. A constructive model is one based on equations of attrition
and, possibly, square or hexagon-tiled maps using discrete jumps in both space and time. To
decide whether to accept a course of action, one can use a constructive model (a “wargame”)
to evaluate the alternatives. Related work by Czigler et al. [Czigler 94] demonstrates the
usefulness of simulation as a decision tool. Our extension in SBP is one where we permit
many levels of abstraction for a model, not just the aggregate abstraction level characterized
by Lanchester equations and combat result tables. The idea is to allow the planner the
flexibility to balance the need between the required level of detail and the amount of time

C3

given to make a decision.

Although the planning system shown in Figure 1 is divided into 5 functional blocks, we
will describe the overall framework in terms of three components: the experimental design
component, the output analysis component and the simulation component. Experimental
design is a method of choosing which configurations (parameter values) to simulate so that
the desired information can be acquired with the minimal amount of simulation [Law 91].
Since we treat uncertainty in the planning domain as random variates based on probability
distributions, repeated simulations (i.e., replications) using sampled data are necessary in
order to perform the proper analysis, which includes confidence intervals about the mean
for each result. We apply both heuristic and standard experimental methods to reduce the
overall simulation time in two aspects: 1) in reducing the number of replications, and 2) in
reducing the overall computation time spent on a single simulation of a plan on a particular
route.

Following the experimental design, we simulate models of individual objects. This com-
ponent is called Trial (block 2) as shown in Figure 1. Figure 2 displays the lower level model
of the Trial block where each entity of the planning domain is modeled individually using the
appropriate model type. We assume that there are seven types of physical objects: BlueAC,
RedAC, Radar, SAM, Wz, Tqt, Zones and one abstract object called Eval. The class BlueAC
stands for Blue Aircraft and RedAC for Red Aircraft. Radar represents a ground radar site.
SAM represents a ground Surface-to-Air Missile site. Wz represents the weather. Tgt repre-
sents the target that needs to be destroyed. In the current prototype, the target is the red
force munitions factory. Zones represent the area of defense zone. For the zones, we assume
that there are a set of radars strategically located inside the zone such that when an enemy
plane BlueAC flies inside the zone, it is detected.

During a typical simulation loop, every object updates its local state and perform actions,
which in turn may affect other objects in the following time slice. The last object to be called
within a simulation loop is Eval. Fuval is responsible for three functions:

1. Maintaining a consistent “current state” of the world that is an aggregated state of all
the current states of each object.

2. Deciding the outcome of inter-object events such as an engagement event between a
BlueAC and a RedAC. By allowing either of the objects involved decide the outcome of
an event-—which would normally be beyond their control— we would violate symmetry
and self containment among objects.

3. Evaluating each situation (from the planner’s point of view) for every time slice and
maintaining a score which represents the goodness of the plan.

We now perform output analysis using the set of output data produced from the repli-
cations using the following blocks: Replicator (block 1), Evaluator (block 3) and Ana-
lyzer (block 4). Output analysis is concerned with obtaining the appropriate interpretations
of the output data. The Replicator controls the random number streams for each replication.
Different random number streams are used for each run, so that the results are independent
across runs. We also allow for common random numbers (CRN) to provide a controlled
environment for comparison among alternatives. This is to eliminate any “environmental

C4

differences” that can exist between different simulations. CRN is a standard variance reduc-
tion technique in simulation and we use it across different alternative route plans within the
same replication so that we may expedite convergence to the true placement of the mean.
In its simplest form, the Evaluator serves as the accumulator of any relevant simulation
data that is produced from the Trial Block. If the objective function within the Trial block
produces a set of scores for each alternative, a straightforward evaluation approach is to total
the scores produced from the replications for each alternatives. Using the accumulated data
produced by the Evaluator block, the Analyzer block calculates the mean, variance and the
confidence interval for each alternative. The mean of the replication results serves as the
basic “data” point for the response surface representing the goodness of a plan. Variance can
be a measure of predictability or stability when the variance is small. Confidence intervals
are useful because given a sample output distribution and a confidence level z, the interval
states that, within 2% confidence, the true mean lies within the stated interval [Lee 96).

2.2 An Air Interdiction Scenario

As one of the applications of SBP, we have chosen a typical air interdiction scenario, and
developed its Simulation Based Planner (C++-) and graphical user interface (Tk/Tcl) within
our Multimodeling Object-Oriented Simulation Environment (MOOSE) initiative. To illus-
trate the usefulness of the SBP approach, we consider the air interdiction scenario depicted
in Figure 3. Figure 3 defines a scenario with dynamically moving objects. The mission of
the blue force aircraft is to destroy a red force munitions factory. There are three Radars
(R1, R2, R3) and two Surface-to-Air Missile (SAM) sites (51, S2), each with different ef-
fective detection ranges. Two red force fighters (A1, A2) are located in air defense Zone2
and Zone3 respectively, while one red force fighter (A9) is located outside of the air defense
zones. At first glance, the problem of guiding the blue force around the radar, SAM and air
defense zone coverage, and toward the factory seems like a simple problem in computational
geometry. The geometry approach is used frequently for route planning problems. A typical
rule might be formed as follows “To locate a path, avoid radar and SAM fields, and avoid
fighting against enemy fighters.” The problem with this simple approach to route planning
is that the reasoning becomes difficult when uncertainty and dynamics are present. This
complexity manifests itself as an increasingly large rule base which often proves difficult to
create, maintain and verify for consistency.

To illustrate the kind of uncertainty and dynamics which are involved, consider the
following available information at some point during the mission.

e Uncertain location and range : Radar R and R2 have been identified as permanent
fixtures, but a land based scout report suggests that RS may have mobility. More-
over, the ranges (track, missile, arm range) of SAM site S7 is well known, but S2 has
been reported to have a better guidance system including swift mobility, improving its
surveillance capability.

¢ Uncertain enemy mission : red force fighter A1 and A2 are known to be on a Combat
Air Patrol (CAP) mission, since they are always detected around Zone2 and Zone3;
however, A8’s mission type is unknown.

Cs

In these examples, the behavior of each object is simplified as much as possible, since
our purpose is to demonstrate how to handle uncertainty in SBP, and not to focus solely
on the complex behaviors of objects. However, we have a plan to include the sophisticated
behaviors of each object incrementally. This can be considered as an advantage of the SBP
approach: the ability to increase the level of detail of the simulation object model as desired.

3 Route Planning Examples and Results

Figure 4 shows two possible routes (Routel, Route2) under the environment defined in Figure
3. The goal of blue force aircraft is to destroy the red force munitions factory while satisfying
3 constraints: time or fuel level, safety, and destruction of the target. Given the possible
routes, the role of SBP is to choose the best route minimizing time and fuel consumption,
and maximizing safety and target destruction. In Figure 4, Routel is more attractive than
Route? if we value mission time above all others, but seems less safe since it is vulnerable to
an attack by red fighter A1. Route2 might be considered more safe and achieve higher target
destruction than Route! by avoiding the attack from fighter A1 and SAM site S1. However,
it will be detected by radar R2, increasing the probability of losing blue force aircraft or
damage to blue force aircraft. Moreover, there is a big chance of being detected by radar R3
even though its location is uncertain. The table at the lower left of F igure 4 shows the result
of the SBP. We display the mean score and the confidence interval half width of each mean
at a 90% confidence level. As can be expected, Route2 is more successful since it avoids
direct attacks from the highly destructive enemy fighter and the SAM site (mean score of
Route2: 69, mean score of Routel: -54).

If we delete Route! and consider another route based on the result of the previous situa-
tion, we may have two routes we want to analyze. F igure 5 illustrates these two candidates.
Route3 was chosen to avoid direct attack from A1, but for a short time period it will be
detected by RI. Routed also takes the blue force into the track range of S1, but not into its
arm or missile range. Being detected in the track range of S7 does not seem very dangerous
since only tracking functions may be performed by 51. We can expect its success to depend
largely on the result of the samplings for uncertainty factors: specifically, the location and
guidance capability of SAM §2 and the mission type of A3. If the powerful guided system
of SAM is sampled close to this route, or A3 has a intercept capability, then the chance
of success will be very small. Otherwise, the chance of mission success will be very good.
These nondeterministic and stochastic characteristics can be resolved by multiple simulation
with varying values for the uncertainty factors. The confidence interval of the mean score
of Route3 is wide in comparison to that of Route2 due to the reason previously discussed;
however, the overall mean score is better than that of Route2 because of the small chance of
being detected by S2 or intercepted by A3.

We can now delete Route2 and insert a route, Route4, which is carefully chosen to mini-
mize the amount of time that a blue force aircraft will be within the detection ranges of R2
and RS3 as in Figure 6. The result of the SBP shows almost the same mean score for Route3
and Route{ (Route3 : 110.36, Route4 : 103.08) with Routed being slightly better?. But

?The goal is to maximize the mean score for determining the better plan.

C6

we can select Route/ as the best overall route based on its more narrow confidence interval
(Route4 : 1.3, Routed : 6.0).

4 Implementation

In this section, we briefly introduce an example of the multimodel which we developed for the
Air Force Route Simulation and two analysis methods in the multiple simulations for dealing
with uncertainties, which arise from Simulation Based Planning. Additional implementation
issues and their potential solutions can be found in [Lee 96].

The purpose of the multimodel is to create a heterogeneous collection of connected sub-
models so that one can simulate different parts of the system at different abstraction levels.
The choice of a dynamic selection of abstraction level provides flexibility to the simulation
based planning activity; real-time constraints can be met by tuning the multimodel. To
implement the multimodel, the generic Route Simulation Model in Figure 1 was instantiated
to the Air Force Mission Route Simulator, and each object resides inside the Trial block as in
Figure 2. Among the seven types of physical objects, we chose one object, BlueAC, to explain
how we could capture the object’s multimodel behavior. The model presented here is not
complete since it has not been validated by a Subject Matter Expert (SME). However, the
model represents the kind of model that one could obtain from the SME through knowledge
acquisition methods. Since building sophisticated and realistic models is not the issue in our
current research, simple yet sensible models were built to prove our SBP approach.

The toplevel model of the BlueAC object is shown in Figure 7. It is modeled as an
FSA with three phases: Approach Target, Return to Base and End Mission. Figure 8 shows
the refinement FSA for Approach Target phase in Figure 7. Going another level down from
the Traverse Route phase, Figure 9 illustrates the functional block model for updating the
location while traversing the route. Figure 10 illustrates the refinement of RedAC Alert Mode
in Figure 8.

Assuming that a set of alternate routes and environment data are given through the
GUI, dynamic models are simulated and evaluated for each route. The simulation process is
replicated and its output results are accumulated and then analyzed by the Analyzer (ref.
Figure 1).

For the object, we categorized the uncertainty into several types.

e uncertainty of existence: the object may or may not exist.

e uncertainty of location: an area of uncertainty of the object’s location is available but
the exact location of the object is uncertain.

e uncertainty of range: the exact detection range or firing range is not known.

uncertainty of mission: the exact mission type of an object is unknown.
¢ uncertainty of fire power: the destruction capability of the object is uncertain.

These nondeterministic and stochastic characteristics were resolved by multiple simula-
tions using different samplings of the uncertainty factors. The planning problem becomes

C7

one in optimization for an objective function representing the cost of traversing a route.
'This cost is currently a function of elapsed time, remaining strength of the unit and the level
of success regarding achieving the goal. To reduce the total number of replications in the
simulation, we used two different output analysis methods: iterative and non-iterative. The
iterative method attempts to quantify significant pairwise differences among the alternatives’
means within a given confidence interval. The method is referred to as “iterative” because he
algorithm iterates performing for every iteration, a set number of replications and analyzing
data to see if there are any significant differences among each route. Whenever a route is
found that is significantly worse than all other routes, this route is then eliminated. The
iteration continues until only two routes remain and a difference exists between the two of
them.

The Non-iterative method is a method that avoids making an unnecessary number of
replications to resolve what may be an unimportant difference. When two alternatives are
close, we may not care if we erroneously choose one system (the one that may be slightly
worse) over the other (the one that is slightly better). Thus, given a correct selection prob-
ability P and the indifference amount D, the method calculates how many more replications
are necessary to make a selection with the probability of at least P, the expected score of
the selected alternative will be no smaller than by a margin of D. In our experiment, we
have chosen P = 0.95 and D = 13. A smaller D will produce more accurate results, but with
many more replications.

Recently, we have begun construction of a system, called MOOSE, to enable users to in-
teractively specify multimodels through a modeling window. Output is viewed via a scenario
window, similar to those shown in Figures 3-6. MOOSE (Multimodeling Object-Oriented
Simulation Environment) represents an implementation for a simulation system that is under
construction, and based on an extension to object oriented design (http://www.cis.ufl.edu/
~fishwick/tr/tr96-026.html). MOOSE is the next generation of SimPack (http://www.
cis.ufl.edu/~fishwick/simpack/simpack.html, which was initiated in 1990 for provid-
ing a general purpose toolkit of C and C++ libraries for discrete-event and continuous
simulation.

5 Conclusions

We have discussed the method of simulation-based planning within the confines of an air
interdiction example. Our view is not that SBP replaces other forms of planning, but that
this new approach can be used in conjunction with existing, higher level planning approaches.
This way, given a set of alternatives to consider, SBP is able to extend the planning horizon in
three aspects: probabilistic uncertainty is handled through detailed and replicated simulation
of models rather than solving them analytically using probability theory; it extends the
level of reasoning to a finer level of granularity, producing plans that are closer to the
level of execution and discovering subtleties that may be missed by a higher level planner;
and finally, it breaks down the complexity of multiagent adversarial planning by employing
object-oriented multimodel simulation.

Once the simulation results have been produced, the data can be analyzed and interpreted
in several ways to choose the “best” plan. For instance, we can choose the plan which has

C8

not only a good mean score but also the minimum confidence interval width to ensure that
it is the safest plan possible. We may also decide to choose a plan that has the most
number of highest scores even though the confidence interval width may be large in order
to select a plan that has the best potential in spite of risks involved. We can even decide to
choose a plan at random (given that the scores are above some threshold) which will produce
nondeterministic planning. This is particularly useful for mission planning—opposing forces
should not be able to predict one’s plan. In addition, similar to how simulation is used for
visualization, simulation can be easily used to perform visual playback of how a plan was
simulated to explain the planner’s decision. This can be very useful for the military since
much of the military training is done through after action review.

Prior to the advent of fast low-cost personal computers, few researchers would consider
simulation of a fairly extensive experimental design to be a possible candidate for real-time
mission planning. However, as the speed of low-cost computers increases, the simulation-
based planning technique presents itself in a more attractive light. Our longer range goal
is to explicitly link several plan model levels together so that, for instance, a rule-based
level can be identified from a lower-level simulation. One of the authors (Kim) is studying
effective consistency measures which will rectify differences in rules produced empirically
(through knowledge acquisition) and rules generated automatically from multiple low-level
simulations.

6 Acknowledgments

We would like to acknowledge Karen Alguire, Project Manager, at Rome Laboratory, and
sponsorship under United States Air Force grant F30602-95-1-0031.

7 Biographies

Paul A. Fishwick is an Associate Professor in the Department of Computer and Informa-
tion Science and Engineering at the University of Florida. He received the BS in Mathematics
from the Pennsylvania State University, MS in Applied Science from the College of William
and Mary, and PhD in Computer and Information Science from the University of Penn-
sylvania in 1986. He also has six years of industrial/government production and research
experience working at Newport News Shipbuilding and Dry Dock Co. (doing CAD/CAM
parts definition research) and at NASA Langley Research Center (studying engineering data
base models for structural engineering). His research interests are in computer simulation
modeling and analysis methods for complex systems. He is a senior member of the IEEE and
the Society for Computer Simulation. He is also a member of the IEEE Society for Systems,
Man and Cybernetics, ACM and AAAI. Dr. Fishwick founded the comp.simulation Inter-
net news group (Simulation Digest) in 1987, which now serves over 15,000 subscribers. He
was chairman of the IEEE Computer Society technical committee on simulation (TCSIM)
for two years (1988-1990) and he is on the editorial boards of several journals including the
ACM Transactions on Modeling and Computer Simulation, IEEE Transactions on Systems,
Man and Cybernetics, The Transactions of the Society for Computer Simulation, Interna-

c9

T I

tional Journal of Computer Simulation, and the Journal of Systems Engineering. Dr. Fish-
wick’s WWW home page is http://www.cise.ufl.edu/~fishwick and his E-mail address
is fishwick@cise.ufl.edu.

Gyooseok Kim received the B.S. degree in Electronics from Korean Air Force Academy
in 1984 and the M.S. degree in Computer Science from Korean National Defense College in
1989. He served in the Korean Air Force as a chief programmer of the Korean Air Defense
System. He is currently pursuing a doctoral degree in the Computer and Information Science
and Engineering department at the University of Florida. His research interests are focused
on knowledge acquisition and validation within qualitative and quantitative simulation. Mr.
Kim’s E-mail address is kgs@cise.ufl.edu.

Jin Joo Lee received the B.S. degree in Computer Science from Ewha Womans University,
Korea in 1988 and the M.S. degree in Computer Science from Brown University in 1991. After
receiving the M.S. degree, she was a research engineer at Human Computers Inc., Korea until
1992. She received a PhD degree in the Computer and Information Science and Engineering
department at the University of Florida in 1996. Her research interests are in Al planning,
simulation and control. Ms. Lee’s WWW home page is http://www.cise.ufl.edu/~j11
and her E-mail address is j11@cis.ufl.edu.

References

[AFM 1-7 54] Department of the Air Force. Air force Manual No. 1-7 : Theatre Air Forces
in Counter Air, Interdiction And Close Air Support Operations. Department of
the Air Force, 1954.

[CASTFOREM 96] CASTFOREM, Web Reference: http://hp01.arc.iquest.com/
mosaic/060.html

[Czigler 94] M. Czigler, S. Downes-Martin and D. Panagos. Fast Futures Contingency Sim-
ulation: A “What If” Tool for Exploring Alternative Plans, In Proceedings of the
1994 SCS Simulation MultiConference, San Diego, CA, 1994.

[Drew 92] D. M. Drew. Air Force Manual 1-1: Basic Aerospace Doctrine of the United States
Air Force, Volume II, Department of the Air Force, 1992.

[Fikes 72] R.E. Fikes, P.E. Hart, and N.J. Nilsson. Learning and Executing Generalized
Robot Plans, Artificial Intelligence,3,1972.

[Fishwick 95] Paul A. Fishwick. Simulation Model Design and Ezecution: Building Digital
Worlds, Prentice Hall, 1995.

[Janus 96] JANUS, Web Reference: http://hp01.arc.iquest.com/war/janus.html

[Law 91] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis McGraw-Hill,
1991

C10

[Lee 93] J.J. Lee, W.D. Norris and P.A. Fishwick. An Object-Oriented Multimodeling
Design for Integrating Simulation and Planning Tasks, In Journal of Systems
Engineering, 3, 220-235, 1993.

[Lee 94] J.J. Lee and P.A. Fishwick. Real-Time Simulation-Based Planning for Computer
Generated Force Simulation, Simulation,299-315, 1994.

[Lee 95] J.J. Lee. and P. A. Fishwick Simulation-Based Real-Time Decision Making for
Route Planning. In Proceedings of the 1995 Winter Simulation Conference, 1087-
1095, 1995

[Lee 96] J.J. Lee. A Simulation-Based Approach for Decision Making and Route Planning.
PhD Thesis, University of Florida, 1996.

[Russell 95] S.J. Russell and P. Norvig. Artificial Intelligence A Modern Approach, Prentice-
Hall, 1995.

[Schoppers 87] M. Schoppers. Universal Plans for Reactive Robots in Unpredictable Do-
mains, In Int. Joint Conference on Artificial Intelligence,1987.

[Spick 87] M. Spick. An Illustrated Guide to Modern Attack Aircraft. An Arco Military Book,
Prentice Hall Press, New York, 1987

[Salisbury 93] M. Salisbury and H. Tallis. Automated Planning and Replanning for Battle-
field Simulation, In Proceedings of the Third Conference on Computer Generated
Forces and Behavioral Representation,1993,243-254,0rlando,FL.

[Wargames 96] Wargame Catalog, Web Reference: http://hp0Ol.arc.iquest.com/
war/war.html

Cll1

Executive 0
Experimental
Design
N N
Trial 2
. itials i,i €{l.n
Replicator 1 Initialize For Route Ri,i €{1..n}
Environment Evaluator 3
Replicator e Route Simulation Module . .
- stores sim.
Random Seed —1—=»{ > Ra’(‘?"m #t time
seed enerator Evaluation Functiorlr = - stores scores
set of scores
accumulated .
set of times
output data Analyzer 4
make stat calls for data analysis -Confidence
-Variance
- Mean ... etc.

Figure 1: Generic Top Level Architecture of a Route Planner

Cl12

Trial 2

Initialize For every Route Ri,i=1ton, run
Environment
- et of scores
—_—— > | AF Route Simulator 2
seed Random # set of times
G - -
enerator Evaluation Function

AF Route Simulator

BlueAC RedACH [Radar SAM Wx Tgt Zones

| i] T
R I i

Eval 1 = true or 2 = true

Evaluation Score for Ri

PARAMETERS
1. mission failure
2. mission success

Figure 2: General Simulator Module

Figure 3: A Typical Air Interdiction Scenario

Cl4

Munitions Factory
< ‘nng PR B

Figure 4: Two Possible Routes in the Figure 3

C15

Figure 5: Deleting Routel in the Figure 4, and Inserting Route3

Cl16

Figure 6: Deleting Route2 in the Figure 9, and Inserting Route4

C17

new state

.

BlueAC::Execute

current state Approach

Target

returned to

PARAMETERS

1. mission failure
2. mission success

Figure 7: Blue Aircraft(BlueAC) object model

Cis8

1 =true or 2 = true

BlueAC:Approach Target

4 =true & 3 =false
4 =true

1 = fal$€ Traverse

Destroy
Target

2 =true & 7 = false

ion failure

5 = true -> tar

et destroyed

i 6 = true -> mission failure

—

1.

o ~JAWNPBWLN

PARAMETERS W
boolean

. missile detected

. red destroyed or avoided

. red detected

. target destroyed

. blue destroyed or disabled

. missile destroyed or avoided
. time left of mission

target in range

—

Figure 8: Approach Target for BlueAC

C19

BlueAC::Approach Target > Traverse Route

x(k x(k+1
® Update (D)
- speed ' Location new location
- current location
- delta-t
- angle

- wind factor

(force, angle)
- fuel level

Figure 9: Traverse Route Function for BlueAC::Approach Target

C20

BlueAC:Approach Target > RedAC Alert Mode

6 =true

3 =true 2 = fals 1 = false

4 = false or 5 = fals

6 = true

Ay

-

PARAMETERS

boolean

1. enough fire power

2. enemy lost

3. enemy destroyed

4. enough fuel

5. enough time

6. blue destroyed or disabled

enum
a. mission behavior
= {passive, aggressive}

Figure 10: Red Aircraft(RedAC) Alert Mode for BlueAC object

C21

A SIMULATION-BASED APPROACH FOR
DECISION MAKING AND ROUTE PLANNING

By
JIN JOO LEE

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA
1996

To God
And to my parents, Bum Suk Lee and Chung Sook Lee

Dii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank God for leading me every step of the
way. I am very grateful to my advisor, Dr. Paul A. Fishwick, for his guidance and
constant encouragement throughout my years at UF. I would also like to thank
other members of my supervisory committee, Dr. Sherman X. Bai, Dr. Douglas D.
Dankel, Dr. Timothy A. Davis, and Dr. Li-Min Fu, for their kind understanding and
willingness to serve on my committee.

I must thank my dear husband, Dongwook, for his love and for always believing in
me even at times when I did not. I thank my darling daughter Jungah(Josi), for being
a healthy and a happy child. Without them, these past few years would have been
quite barren. My deepest respect and gratitude go to my parents for their wisdom
and their enormous love. Everything that I am today, it is because of them. I thank
my wonderful sisters and brother for their constant support and loving concerns.

My special thanks to Sooha Lee, Hyesun Lee, Kangsun Lee and Inhee Chung for
their friendship. I would like to thank the following colleagues of the Simulation
Group: Gyooseok Kim for his time in developing the GUIs for my applications and
Robert M. Cubert for his work with the Blocks language for multimodeling,.

I would like to mention Ms. Jung-Hee Choi and Ms. Ji-Soo Choi for their loving
help with Jungah. It is because of people like them that a mother like me can pursue
such a dream.

Finally, I want to acknowledge the Institute for Simulation and Training, Science
Applications International Corporation (SAIC) and Rome Laboratory, Griffiss Air
Force Base for funding most of the research done in this dissertation.

Diii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS Piii
ABSTRACT pvi
CHAPTERS D1
1 INTRODUCTION Dl
1.1 Problem Statement D2

1.2 Background and Related Work D4
1.2.1 Simulation and AI Planning D4

1.2.2 Intelligent Control D7

1.2.3 Decision Science and Game Theory D7

124 Scheduling D7

1.2.5 Object-Oriented Multimodeling Methodology D9

1.3 Contribution to Knowledge, Dl4

1.4 Outline. D15

2 METHODOLOGY pl7
2.1 Simulation-Based Planning D17
2.2 The SBP framework D18
2.2.1 Simulation block : Txial D19

2.2.2 Experimental Design block : Executive D23

2.2.3 Output Analysis blocks : Replicator, Evaluator, Analyzer D33

2.3 Rule-based Systems and SBP D38

3 A MULTIMODEL DESIGN FOR DECISION MAKING D45
3.1 A Truck Depot Example| D45
3.2 Intelligent Objects D 49
3.2.1 Exception Control D 50

3.2.2 Mixture Control D 52

3.2.3 Optimal Height Control D53

3.3 Non-Intelligent Objects D 54
3.3.1 Model Design D 54

3.3.2 Model Execution D 57

4 ADVERSARIAL ROUTE PLANNING D58
4.1 Mission Planning for Computer Generated Forces D58
4.2 Planner Architecture D59

Div

4.2.1 World Database (DB) D59
4.2.2 Reactive Behavior. L. p60
4.2.3 Planning Behavior D61
424 Expert System D66

4.3 Interface between Planner and other Command Entities D66
4.4 Interface between Terrain Analyzer and Planner D68
4.4.1 Terrain Analyzer D69

4.5 Demonstration Mission Scenario D70
46 PlanningResults D74
NON-ADVERSARIAL ROUTE PLANNING D79
5.1 Rover Route Planning D79
5.2 Simulation-Based Rover Route Planning System D82
521 Planner D82
5.2.2 Experimental Design D88

5.3 Prototype Environment D91
5.4 PlanningResults D92
NONDETERMINISTIC ADVERSARIAL ROUTE PLANNING D97
6.1 Air Force Mission Planning D 97
6.2 Planner Architecture D 99
6.2.1 Multimodel of AF Mission Route Simulator D99

6.3 Demonstration Mission Type D111
6.4 An Air Interdiction Scenario D113
6.5 PlanningResults D115
CONCLUSIONS e s, p 126
FUTURE WORK p129
REFERENCES D131
BIOGRAPHICAL SKETCH i . D134

Dv

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

A SIMULATION-BASED APPROACH FOR
DECISION MAKING AND ROUTE PLANNING

By
JIN JOO LEE
August, 1996

Chairman: Dr. Paul A. Fishwick
Major Department: Computer and Information Science and Engineering

Decision making is an active area of research in simulation, systems engineering
and artificial intelligence. One subset area of decision making, automated route plan-
ning, is covered in this work with our approach based on the technique of simulation
rather than on purely heuristic or geometric techniques. This new technique is called
simulation-based planning (SBP). Simulation-based planning is useful for route plan-
ning under various conditions including uncertain locations and events with potential
adversarial activity. We propose that it is only by using simulation that one can make
the most effective plan in uncertain and complex environments.

SBP extends the planning area mainly in three aspects. First, probabilistic un-
certainty is handled through detailed and replicated simulation of models rather than
solving them analytically, for example, using probability theory. Second, simulation
models naturally extend the level of reasoning to greater detail, often involving con-

tinuous state space. Thus, SBP is able to produce plans that are closer to the level

Dvi

of execution. Additionally, one can often discover subtleties that may be missed by
higher level planners which are often rule-based. Third, the complexity of multia-
gent adversarial planning breaks down when object-oriented multimodel simulation
is used. Here, each agent or adversary is individually modeled and simulated in re-
sponse to each plan. In addition, to ensure that SBP can be used within reasonable
time constraints, we develop general experimental design algorithms and techniques

which reduce the overall simulation time.

Dvii

CHAPTER 1
INTRODUCTION

Planning is indiépensa.ble to our everyday lives. We plan for everything, whether
we work, relax or sleep. Having a plan-a good plan-greatly affects the successful
outcome of events and this is why humans spend time to plan, hoping that planning
ahead will increase the probability of success. Planning is a fundamental aspect of
human intelligence and therefore it has become a fundamental problem in model-
ing intelligent behavior within Artificial Intelligence. Through time, planning do-
mains have evolved from the typical “toy-world” domains such as the blocks world to
“real-world” domains such as mission planning in the military. The earlier classical
planning methods are no longer appropriate for these real-world planning problems
which can contain uncertainties and real-time constraints in decision making. A ma-
Jjor problem with these uncertain domains is that it is hard to predict the outcome
of events, which is essential to planning.

Our approach to solving the problem is Simulation-Based Planning (SBP)-a
method that incorporates simulation models into the planning process. By building
simulation models for individual objects and simulating them to gather the combined
effects at the required level of detail, we are able to plan for more complex, adversar-
ial environments more readily and effectively. In addition, SBP’s ability to reason at
a level of finer granularity can bridge the gap between the two planning areas: 1) the
classical Al planning domain which represents the coarser level of planning, dealing
mainly with symbolic and abstract actions; and 2) the intelligent control planning do-
main representing the lowest level of planning, dealing with actual optimal execution

of the given plan.

D1

1.1 _Problem Statement

The general problem of planning in Al is commonly identified with problems that
are highly conceptual where individual actions are of the form “Go To Supermarket”
and “Buy milk” [34]. A plan is an ordered set of such high-level actions. Here, the
concern is not how one will physically (at a detailed level) get to a supermarket, but
rather it is on the ordered set of actions whose logical effects will satisfy the goal.
STRIPS [13, 14] is a classical example of such an approach to planning. This type
of approach is reasonable if the execution of the produced plan is not the responsi-
bility of the planner. Difficulties arise when execution becomes part of the planning
system, and planning problems take place in an environment over which the planner
has no control, such as another agent or an enemy, and when there is uncertainty
of available information or uncertainty of another agents’ reaction. In such cases,
accurate prediction of the resulting states of plan execution is extremely difficult.

Past reasons for using rules in planners centered around the idea that rules are
easy to build, less expensive to execute, and that they adequately reflect the heuris-
tics of the human decision maker (e.g. the company commander). However, because
thousands of rules are involved just to model one agent or entity, the complexity of
maintaining and reasoning about plans is not easy, especially since rule-based sys-
tems are usually centralized. Also, real-time constraints are often hard to meet with
the rule-based approach because there is no well-defined way to optimize the rea-
soning process. As will be discussed in section 2.3, rules alone are inadequate-due
mainly to their symbolic nature-in handling planning areas which require reasoning
at finer level of detail often involving continuous systems. In addition to trying to
model human decision making, it is just as important (if not more) to create plan-

ners which yield the best plans or decisions that are likely to succeed even in the

D2

R - I

presence of uncertainty and complexity. In actuality, some combination of 1) captur-
ing human decision making heuristics and 2) creating automated planners capable of
near-optimal decisions (based on objective functions) is the ideal solution, and it is
toward this solution that our work is directed.

In this work, we define a simulation-based planning (SBP) methodology for pro-
ducing near-optimal decisions and route plans. Since the route planning area of
research lies in between the higher level of symbolic AI planning and the lower level
of intelligent control, it is an ideal candidate for SBP, where the use of simulation
enables reasoning under uncertainty at a finer level of granularity. Route planning
can largely be categorized into two types: 1) a set of alternative routes are given and
the goal is to select the best route with the best plan of execution, and 2) no alter-
native routes are given and the goal is to produce a near-optimal traversal strategy
in the current environment. In the first type, it is assumed that the set of alternative
routes are produced by a higher-level symbolic planner or a human expert. In the
second type, selecting an alternative route is no longer an issue but rather selecting
the appropriate traversal strategy (e.g. various parameter settings, behaviors) for
route traversal is the main concern.

In terms of specific application areas, we have chosen mission planning within
the military domain as our main area since it always involves some form of route
planning of the first type. In the military, routes greatly affect the success of the
whole mission, whether the mission takes place on ground or in the air. We have
also applied the SBP method to solve the second type of route planning for the Mars
Rover. Finally, as an application of SBP for on-line decision making, we present a

simulation model based decision system for controlling a truck depot.

D3

1.2 Background and Related Work

At a fundamental level, general Al planning, decision making, intelligent control
and route planning in robotics, all strive to solve a common problem—based on
some model of a given process, determining what actions will affect the process in a
desired way. At a glance, the problem appears to be different because each area uses
different types of models dealing with different levels of abstraction and applications.
To view the problem of decision making and route planning in a larger context, we
have studied different areas that are relevant to planning. First, we present some
background insights about the relationship between simulation and Al planning and

then discuss related work.
1.2.1 Simulation and Al Planning

In the simulation literature, simulation is defined as “the discipline of designing
a model of an actual or theoretical physical system, executing the model on a dig-
ital computer, and analyzing the execution output”; Fishwick [17, page 1]. In the
planning literature, Dean and Wellman [10] state that the idea of using a model to
formulate sequences of actions is central to planning and, given a sequence of actions,
a robot can use the model to simulate the future as it would occur if the actions were
carried out. Simulation can provide the robot with information that can be used
to suggest modifications or to compare the proposed sequence with an alternative
sequence. And we believe humans also have models built and stored in their brain
for most objects or systems that exist in the world and these models are used to
formulate sequences of actions that would occur in the future if a plan was executed.
Especially for problems where the complexity of finding the solution is too complex
for humans, such as ﬁnd a path through a maze, humans tend to use trial and error

method to eventually find the correct path. Once simulation models have been built

D4

for individual entities of the world, simulation can be used as a tool to provide the
planning system with information useful for evaluating its hypothesis. Therefore,
it is logical that we employ simulation within the planning process to simulate the
uncertain results of a proposed plan before the plan is selected for execution.

To overcome this increase in complexity of reasoning, many new approaches have
been introduced. Schoppers’s universal plans generates a reaction to every possible
situation that can occur during plan execution [37]. Salisbury and Tallis’s automated
adversarial planner [35] is a hierarchical, backtracking planner capable of performing
automated planning, execution monitoring, and replanning. This planner accepts a
mission with its related information such as task organization from the division plan
and searches the problem space to find a sequence of actions for the battalion. The
plans produced by these methods are robust but can be very large and expensive to
execute. Also, replanning is often too slow to be useful in time-critical domains.

From a system theoretic point of view, latest work by Dean et al. [9] focuses on
a method based on the theory of Markov decision processes for efficient planning in
stochastic domains. This approach is closely related to our work in that the world is
modeled as a set of states and actions having a transition model that maps state and
action pairs into discrete probability distributions over the set of states. However, it
differs considerably in several aspects. First, probability is handled analytically which
means the outcome is probabilistic but deterministic. In SBP, it is nondeterministic
since data is either sampled from a distribution or produced by a more detailed sim-
ulation model. Second, the value or reward of each state has to be predetermined
with a probability. With SBP, the value of the entire path is calculated at the end
of each simulation based on an objective function. Another way to describe this dif-
ference is in terms of the objective function: our method uses a dynamic evaluation

function based on simulation data while the other uses a static evaluation function

D5

based on probability and static values. Another difference is the type of domain it
can handle. As Dean et al. [9] state, the method is reasonable only in a benign envi-
ronment while SBP can handle malicious environments involving adversarial agents.
In Wellman [41, 42], the problem of route planning is treated as an extension of the
well known shortest-path problem. He points out that for most Al route planning
domains, the cost of a route is the sum of the cost of its segments and the cost of each
edge in a route are assumed to be known with certainty. Standard search algorithms
such as best-first and A* are based on these assumptions and optimality is no longer
guaranteed when the route costs are probabilistic and dependent. Wellman proposes
a generalized dynamic-programming approach based on stochastic dominance which
solves these problems. However, again this approach does not consider problems
where the state transition itsel{ is nondeterministic.

Uncertainty

In planning, there are several different types of uncertainty [32]. Here, we discuss

two categories that are most relevant to our work.

Data Uncertainty - There may be uncertainty in the knowledge of the environ-
ment such as the location or existence of the enemy. Uncertainty due to noise

of the sensors or other systems also belong in this category.

Randomness - Some domains are inherently random. Even when the available
knowledge is complete and certain, stochastic properties exist. For example, it
is never possible to perfectly predict the reaction of another agent in response
to a given stimuli. Although we may be able to make a good guess, we can
never be completely certain and thus, a form of randomness exists. Another
good example is uncertainty due to the randomness of the outcome of events.
Predicting the outcome of such events as engagement between two entities in

the battlefield is difficult due to its random nature.

D6

1.2.2 _Intelligent Control

Intelligent control deals with problems that are more physical and less conceptual.
The problem of steering a cargo ship to a desired heading [1] or planning a path for a
robot are typical problems in intelligent control. Even though the whole task can be
simply stated as “steer the ship to heading x,” at the control level, if we are to build
a more practical system, we should be also concerned with tuning the control input
to physically steer the ship to a precise heading. Thus, planning and control should
be integrated in order to provide a more complete and reliable system. Dean [10]
provides a good overview of the various problems and techniques available in these

two areas.

1.2.3 _Decision Science and Game Theory

Decision science involves the creation of decisions based on a game-theoretic foun-
dation. Given the current “state of the world,” one can embark upon several courses
of action (decisions) each of which will yield a payoff or utility [27]. Games can be
naturally extended to continuous systems [3] (often found in simulation) by equating
the input (or forcing) function to a continuously changing decision which alters the

payoff given the corresponding state changes.

1.2.4 Scheduling

Scheduling is a decision-making process that is concerned with the allocation of
limited resources to tasks over time. Optimization of one or more objectives is its goal.
Scheduling problems are very difficult even for situations where the requirements and
resource characteristics are completely deterministic [19]. Rogers [31] divides the
approaches to scheduling into three groups: 1) pure non-simulation-based approaches,

2) pure simulation-based approaches, and 3) hybrid approaches.

D7

Pure non-simulation-based approaches are again divided into two alternative ap-
proaches to schedule generation: the first uses Operations Research (O.R.) tools and
the second is based on Al concepts. Space limits further discussion of the O.R. ap-
proaches and the reader can consult Dempster et al. [11] for more information. Al
approaches have already been discussed in previous sections so they too will not be
discussed here.

Pure simulation-based approaches employ the following steps whenever a decision

needs to be made-typically in a manufacturing system environment [31].

1. The user initializes the simulation model with the current state of the environ-
ment such as released orders and production resources. The planning and order

requirements are also given which comes from higher level information systems.

2. The user identifies the set of actions which is applicable at this decision point

as candidates for evaluation.

3. The user makes one simulation run (because it is deterministic) for each of the

candidates. The results are stored for later analysis.

4. After all options have been evaluated, the one with the best performance is

selected and implemented.

Finally, hybrid approaches emerged due to deficiencies of a pure simulation-based
approach to dynamic rescheduling. One of the problems is that human activities
such as candidate action selection, performance evaluation, and schedule choice are
difficult, causing significant time delays in the overall system. Wu and Wysk [43]
employ discrete simulation to evaluate a set of sound dispatching rules (in the domain
of flexible manufacturing systems). The rule with the best simulated performance in

the time period is then applied to the physical system. This is very similar to our

D8

work since it is using simulation to evaluate and choose the best alternative for the
current situation. However, a major difference, other than the fact that the domain
is totally different, is that these simulations are deterministic. As pointed out [31],
there are questions as to the validity of such simulations for systems where there is

known stochasticity.

1.2.5 Object-Oriented Multimodeling Methodology

The object oriented approach to simulation is discussed in different literature
camps. Within computer simulation, the system entity structure (SES) [46] (an
extension of DEVS [30]) defines a way of organizing models within an inheritance
hierarchy. In SES, models are refined into individual blocks that contain external
and internal transition functions. Within the object oriented design literature [33, 4],
the effort is very similar in that object oriented simulation is accomplished by building
1) a class model and 2) dynamic models for each object containing state information.
Harel [20, 21] defines useful visual modeling methods in the form of “state charts”
so that the dynamics may be seen in the form of finite state machines.

Models that are composed of other models, in a network or graph, are called
multimodels [15, 16, 17, 18]. Multimodels allow the modeling of large scale systems
at varying levels of abstraction. They combine the expressive power of several well
known modeling types such as FSAs, Petri nets, block models, differential equations,
and queuing models. By using well known models and the principle of orthogonality,
we avoid creating a new modeling system with a unique syntax. In the original
multimodeling concept, when the model is being executed at the highest level of
abstraction, the lowest level (representing the most refined parts of the model) is also
being executed. Each high level state duration is calculated by executing the refined

levels that have a finer granularity.

D9

To optimize execution time of these models, we are making an extension to the
multimodeling concept. By using concepts and methods from aggregation, we plan
to build levels of aggregated models so that when time is a limiting factor, we can
choose to execute at higher levels of abstraction.

The following provides an excellent starting point when deciding how to organize
information and build models of dynamical systems from a simulationist point of

view [17]:

1. Start with a concept model or the class hierarchy of the system. This phase
should involve creating all relationships among classes. Classes can be related
in multiple ways but we consider only two key relations, both of which take
advantage of hierarchy and the sifting of information either up a tree (aggre-
gation) or down a tree (inheritance). Generalization or inheritance is where
attributes and methods are copied to lower level classes. Aggregation is the
reverse situation where structural information is passed from the leaf nodes to

the root node.

2. Create a class model using a visual approach such as OMT [33]. A class is a
set of similar objects. The structure of a class involves two items: attributes
and methods. Attributes are static and generalize to capture static models,
whereas methods are dynamic and generalize to capture dynamic models. Ex-
amples of static models are data models (as in the database systems literature)
and semantic networks (in the AI literature). Examples of dynamic models
are found in the simulation literature (e.g Petri nets, automata, block models,
systems dynamics graphs, bond graphs and equational models). The base type
of dynamic myodels are declarative, functional and constraint. Both static and
dynamic models tend to have graphical configurations, but there are exceptions:

static model-first-order logic relations, dvnamic model- differential equations.
D10

(a) Static model structures can change over time. They are called static since
the model structure does not encode dynamics or a change of state. In-
stead, a static model encodes structural information much like the at-
tribute Max_Speed has a value which can change over time but Max_Speed
has no coding information, and so cannot “change itself.” Therefore, “static”
refers to a lack of inherent dynamics or code, and not to an inability to

change.

(b) The term “model” reflects physical objects. Non-physical objects and
classes, such as the data structure Linked_List, are normally not associated
with “model” unless a specific real-world metaphor is applied where, for
instance, a Stack is represented as a physical stack of objects. Therefore,

the term “model” is relevant to real-world phenomena.

3. Finally, Construct a multimodel to build a network of models each of which
defines a part of the overall system. In the usual object oriented approach,
phase three translates to creating methods for an object that alter the state of
that object. The problem is that phase three can be quite complex depending
on the scale of the system being modeled. There needs to be a way of developing
multi-level models that specify the phase three dynamics. Our approach is to

use multimodels for this purpose.

In addition, within the confines of an example, we provide some guidelines for
representing knowledge as models. Let’s consider a physical 2D space called S. S
can be partitioned into cells using several different techniques, such as quadtrees and
meshes. Space S has attributes in each cell. For example, an attribute might be
“water level,” “concentration” or some other physical characteristic of S. There are

two objects which can roam around on space S: A and B.

D11

1. We create an object S which is an aggregate of, say, 4 cells. Each of these cells
has 4 sub-cells. A quadtree model, showing the layout of S, is stored as an

attribute of S.

2. Since S is-a type of space, then we can form a generalization hierarchy where
S inherits attributes from a higher level class called SPACE. We can also form
an aggregation hierarchy for S so that all space attributes of the sub-cells are
aggregated (passed upward) until we reach S as the topmost aggregation node.
The mechanics of where items are physically stored in memory are left to the
implementation. Even though S logically contains the entire aggregate space in
an array, the implementation may choose to keep the information stored either

all at the top node (S) or in the leaf nodes.

3. Let’s suppose that there exists one A and one B in a particular cell, and further
suppose that the dynamic relation of A to B remains fixed. For example, A is
(always) pushing B. Then a dynamic model such as a functional block model
is defined within object S or another sub-object which contains both A and B.
With a functional model, there will be a function ‘a’ defined in object A and
a function ‘b’ in object B. The functional model ‘a — b’ is a model within S.
Therefore, dynamic models contain coupling information for functions which

lie underneath it within the aggregation hierarchy.

4. Consider that we have eight A objects (A1, Ay, ..., Ag) in a cell and that they
are configured in a circle shape. The dynamics for all As are defined so that
the two nearest neighbors of any object operate as if springs connected them
together (i.e. a circle of objects with springs connecting each object to the

nearest 2 neighbors). There will be a constraint model in S which contains

D12

terms referencing the attributes located in each A;. The constraint model is

useful when there is not one direction.

. Suppose that A and B move around independently of one another, but within
the confines of one sub-cell. Then, there will be a function or dynamic model
in each of A and B. There is no higher level “coupling” to form a dynamical
model since the objects are independent. If we let A and B move around the
entire space S then, the aggregation hierarchy (i.e., the static quadtree model
in S) will change over time. Again, this is the logical knowledge representation,
whereas an actual program may decide to avoid this implementation overhead
by storing all information about the sub-cells in S (at the top level) to avoid
changing static models. Most of our route planning domains fall within this
category. Many of the objects such as aircrafts, tanks, radars, robots and rocks
move around independently of one another but within the confines of a certain

planning area.

. So far we have avoided any dynamic model over the “field” S. We can create a
dynamic model in S which defines how sub-cell attributes of concentration or
level changes over time. A diffusion equation may serve as this model. There is
the question of how the diffusion equation (describing dynamics over the field S)
interacts with the other models for the movements of A and B. The interaction
of the field and object dynamic models takes place as a part of the model’s
structure. For example, when calculating the field at any given time, we might
need to know an attribute of A or B. This attribute is referenced directly in the
diffusion equation model in S. The same is true for the effect that the diffusion

equation has on the models for A and B.

D13

7. As a general rule, a dynamic model involving various functions and state vari-
ables should be located in an object which is an aggregate of all objects contain-
ing those functions and state variables. This is why we put the diffusion model
in S. We could, however, have stored the previously specified functional model
a — b within a sub-cell which always contains A and B, and is contained within
S. It need not appear in S unless A and B are allowed to roam throughout S

during the simulation, and not only within a sub-partition of S.
1.3 Contribution to Knowledge

The main contribution of this research is the introduction of a new methodology:
Simulation-Based Planning. SBP extends and improves the planning horizon in three
aspects. First, it handles probabilistic uncertainty through detailed and replicated
simulation of models rather than solving them analytically using probability theory
or using simple Monte Carlo sampling. Second, simulation models can naturally
extend the level of reasoning to a finer level of granularity, often involving continuous
state space. Thus, SBP is able to produce plans that are closer to the detailed level
of execution and thereby often discovering subtleties (which would have been missed
by a higher-level planner) that may lead to failure of a plan. Finally, multiagent
adversarial planning is easily achieved through object-oriented multimodel simulation
where each agent or adversary is individually modeled and simulated in response to
each plan.

A common impression that people have about simulation is that it is time con-
suming. This is true when either there are many alternatives to consider or when
many replications are necessary in order to gather the effects of uncertain factors.
However, we show that simulation time can be reduced, allowing time constraints to

be met, through the use of experimental design methods and multimodeling methods

D14

multi-agent (adversarial) single-agent

nondclcrminisli(AF Mission Planning Mars Rover Planning
(Chap. 6) (Chap. 5)
deterministic CG&:I}:';];SI‘?)" Planning SBP may not be necessary

Figure 1.1. Classification of problems

in simulation. Some domain specific heuristics can also be useful in pruning out alter-
natives. Experimental design is a well established method in simulation which allows
the optimization of the experimental process so that as much information as possible
is obtained at the least cost. Thus, simulation experiments can be designed so that
the plans are evaluated in the time available with a certain confidence level. Another
way to control the simulation time (i.e. the planning time) is to decide at which level
of abstraction the model will be simulated. The newly extended Multimodeling will
allow the simulation models to be defined at different levels of abstraction so that
any one of the levels can be chosen for execution. A high-level simulation can be
done by sampling from a distribution, employing a closed-form analytic technique. A
complex low-level simulation can be done by simulating the state change in greater
detail at each time step with the use of differential equations or continuous-state
control block models. In section 2.2.2, we provide a general framework for developing
an experimental design block called the Executive model that will accomplish such a

task.

1.4 Outline

Simulation-Based Planning as a general methodology is discussed in chapter 2.
In chapter 3, an example multimodel design for decision making is presented using a

truck depot problem.
D15

Figure 1.1 classifies the three sample application domains we have selected in
terms of two properties-whether the planning domain is multi-agent or not and
whether it involves any nondeterminism (uncertainty of data). The mission plan-
ning domain desg:ribed in chapter 4 represents a planning domain that is multiagent
and adversarial but with no data uncertainty. There is uncertainty of enemy’s action
but none in terms of available information or randomness of events. In chapter 5, we
introduce the Mars Rover route planning application. This problem does not involve
any adversarial agent but it does have significant amount of data uncertainty and
randomness. The most complex problem of three, the mission planning in the air
force in chapter 6 is multiagent, adversarial and uncertain. Route planning domains
can also be classified based on whether or not different routes are given as part of the
alternatives. The military mission applications in chapters 4 and 6 involve choosing
a route from a set of alternative routes, whereas the rover planning application in
chapter 5 does not. Finally, conclusions are presented in chapter 7 and future work

is discussed in chapter 8.

D16

CHAPTER 2
METHODOLOGY

2.1 Simulation-Based Planning

Simulation-Based Planning refers to the use of computer simulation to aid in the
decision making process. In much the same way that adversarial trees are employed
for determining the best course of action in board games, SBP uses the same basic
iterative approach with the following items: 1) a model of an action is executed to
determine the efficiency of an input or control decision, and 2) different models are
employed at different abstraction levels depending on the amount of time remaining
for the planner to produce decisions. In the first item, board game trees implement a
static position evaluation function, whereas, in SBP, a model is executed to determine
the effects of making a move. In the second item, SBP can run more detailed models
of a physical phenomenon when there is sufficient planning time or fast computation
or parallel methods are instrumented.

The military has been using simulation-based planning for many decades in the
form of constructive model simulation. A constructive model is one based on equations
of attrition and, possibly, square or hexagon-tiled maps using discrete jumps in both
space and time. To decide whether to accept a course of action, one can use a
constructive model (a “wargame”) to evaluate the alternatives. Related work by
Czigler et al. [6] demonstrates the usefulness of simulation as a decision tool. Our
extension in SBP is one where we permit many levels of abstraction for a model,
not just the aggregate abstraction level characterized by Lanchester equations and
combat result tables. The idea is to allow the planner the flexibility to balance the

need between the required level of detail and the amount of time given to make a

D17

Executive 0
Experimental
Design
N
Trial 2
Replicator 1 Initialize For Route Ri,i £{1..n}
Environment Evaluator 3
Replicator et Route Simulation Module A
- stores sim.
Random Seed - Rnadom # time
set of scores
set of times
output data » Analyzer 4
make stat calls for data analysis -Confidence
-Variance
- Mean ... etc.

Figure 2.1. Generic Top Level Architecture of a Route Planner

decision. The notion that simulation can be used for decision making is covered in
several disciplines, such as for discrete event based models [40].

We are not claiming that SBP is the method to use in all types of planning
problems. For planning problems whose problem domain is well known, the outcome
of each action certain and their interaction simple, SBP will not be able to exhibit
its advantages. And for most cases, SBP should be used in conjunction with some
type of higher level reasoning system so that the initial set of candidate plans are
produced by this higher level system. Then for evaluating which is the near-optimal
plan and for refining the plan to the execution level to ensure near-optimal results,

SBP should be employed.

2.2 The SBP framework

We present the SBP framework in terms of three components: the simulation

component, the experimental design component and the output analysis component.

D18

The model in 2.1 is the top level general framework for simulation-based route
planning systems. We discuss each of the three components and the individual blocks

that belong to each component.

2.2.1 Simulatiqn block : Trial

To use simulation in planning, we first need to identify the set of controllable and
uncontrollable variables. Speeds, routes, actions of objects are controllable, whereas
any kind of uncertainty such as uncertainty of weather conditions and outcome of
combat are uncontrollable. The controllable variables or factors are sometimes called
as parameters in the simulation literature [36]. The main objective of plan simulation
is to gather the effects of the uncontrollable through repeated sampling (replication)
while varying the parameters to find a near-optimal combination of controllable values
in spite of the uncertainty. We say near-optimal because we can never guarantee the
optimality of a plan given the uncertainties of actual plan execution. In addition
to parameters, there are noise factors and artificial factors. Noise factors include
sources of variation within the real-world system as well as exogenous factors such
as customer and supplier characteristics. Artificial factors are simulation specific
variables such as the initial state of the system, termination conditions and random
number streams. We consider noise factors in chapter 5. Due to the nature of our
problem, artificial factors such as initial state of the environment and termination
conditions of plans are assumed to be given by the user. Other issues of artificial
factors are discussed mostly in section 2.2.2. Here we present some definitions that
will help us formally describe the simulation algorithm we have created.

Definitions

We model the environment £ as a finite set of world states Q and a finite set of
actions A where an action may be taken in every state or in a certain subset of states

Q. Let the environment £ consist of a set of K objects W = {W;, W, ..., Wk} and

D19

let their respective states be gi(t) for each W; at time ¢t. Note that we define an object
to be an entity that is physically represented as an object in the real world, object
such as a radar site, missile site and plane. These objects may be an aggregate of
other objects. A Weather object, for example, may be represented as a single object
outputting weather conditions at every delta time or as an aggregate of other objects
such as clouds, wind, and sun.

Then we can define the world state at time ¢ to be

Q(t) = qu(t) x g2(t) x - -+ x gx(t)

Also, we define
A(U) = (a1(2), a2(2), - - -, ak(t))

where a;(t) represents a set of possible actions W; can take at time . Normally, a
single action from the set a;(¢) will be chosen to be simulated. But for objects whose
models are moving continuously such as a fighter aircraft, a basic action such as
UpdateLoc is taken for every time step and any additional action such as fire weapon
may also be taken.

Unlike most plan evaluation schemes where the predicted state transition occurs
by analytic (therefore, deterministic) and probabilistic functions, SBP nondetermin-
istically chooses the “most likely to happen” actions given the situation. In other
words, SBP does not simply choose the state with the highest probability like other
existing methods which use stochastic dominance [42], but evaluates the transition
by sampling the probability. In the deterministic methods, the state that has the
highest probability of being the next state will always be the predicted next state,
whereas, in SBP, that state will most likely be the next state but not necessarily. This
is because, in SBP, the next state is determined either by probabilistic sampling or

by executing a detailed model (which may eventually involve some type of sampling)

D20

of the transition itself. Thus, both an advantage and possibly a drawback, SBP may
come to evaluate actions which do not have the highest probability of occurring.

Since the choice to take action a in a given situation may be uncertain, we model
the probability of this choice for W; in the following example.

Suppose a;1, a2, a;3 are three possible actions given the current state Q(t)!. Then,
based on the prebability distribution or in our case, based on the object models’
internal heuristic or logic, the choice is made.

Let us assume that the model we simulated chose a;;. Let there be two possible
state changes that can result from this action. We denote this change as g; (¢ + 1)

and g;3(t + 1). Then the transition function can be written as
6(Q(t), aiz) = {Q(2) & g (t + 1), Q(t) @ gia(t + 1)} (2.1)

where & denotes a change where a new state ¢;(t + 1) is added and the old state g;(t)

is deleted. Their respective transitional probability can be expressed as

Pr{6(Q(t),a) = Qt) D aa(t+ 1) =a

Pr(6(Q(t), aiz) = Q(t) ® gi2(t + 1)) =

If a detailed transition model exists, then it can be simulated to provide the exact
transition given the current state. But if no such models exists or if time is limited,
we can simply sample the probability given above to decide which will be the next
state of g;. Consequently, the next world state Q(t + 1) is obtained when all the

objects have transitioned to their next states such that
Qt+1) =q(t+1) X gat +1) x -+ x gxe(t + 1)

We now define the following:

'In most cases, an object will make a decision based on a small subset of the world state and
thus entire world state Q is usually not needed.

D21

e Let R be a set of routes that need to be simulated and chosen from. The total

number of routes is /N and R; denotes the jth route where 1 < j < N.

e Stationary Object refers to an object that remains physically in the same
location throughout the simulation and objects that do not have the ability to
physically change location. Ground radars, missile sites and buildings are some
examples. A stationary object may no longer exist when it is destroyed during

the simulation. Let O be the set of all stationary objects where | O |= M.

e Moving Object refers to an object that has the ability to physically move and
change its location during simulation (e.g. planes, AWACS and missiles). Let

D be the set of all moving objects where | D |= L.

e Planner Object refers to the object which is the planning entity itself. We

denote it by O?.

e Let O be the set of uncertain stationary objects. Let D be the set of uncertain
moving objects. Then, these objects can have one or more of the following

uncertainties:

— initial location (if associate total probability is less than 1 then the object’s

existence is also uncertain)

— type (e.g. type of plane, type of missile)

configuration (e.g. power, speed, etc)

— decision logic of the object

Then, following is our simulation algorithm:

D22

1. Initialize environment:
For every replication P, (1 < p < n) setup all objects in O and D by sam-
pling from their respective distributions using the random seed produced by

the replicator.

2. For each route R;,

WHILE ((not success) or (not failure))

Obtain current state Q(t)
FOR each object Wi in W

Simulate Wi to take action Ai

Update state qi(t) to qi(t+1)

by 1) detailed simulation of Ai
or
2) sampling distribution

Update world state Q(t+1)

t=t+1

Simulation strategy is usually a mix of time slicing and event scheduling. Time
slicing is used to routinely check each object for its responses to any change in the
world state. Event scheduling is needed to allow objects to schedule any delayed
response or action that is to occur in some future time which may not necessarily
coincide with a particular time slice. Simulate until the termination criteria such as
goal success or failure is met. The necessary output data of the simulation is now

sent to the Evaluator block.

2.2.2 Experimental Design block : Executive

In Simulation, experimental design is a method of choosing which configurations
(parameter values) to simulate so that the desired information can be acquired with
the least amount of simulating [25]. In experimental design terminology, the input

parameters and structural assumptions composing a model are called factors and the

D23

output performance measures are called responses. The number of runs depends on
three factors: the total number of factors, the number of factor levels and the number
of replications (repeats). One way to reduce these numbers is by using heuristics.
Drawing nomog;aphs of all of the three factors to determine the dominant elements
and to evaluate design tradeoffs is another method [38]. Fractional factorial design
is also applicable [38, 25]. The variables are screened, based only on a fractional
number of runs of the total combinations, for their effect on the response variable.
An issue exists, however, whether we can use them effectively inside the planner as
part of the system since these methods are mainly designed to be used by humans.

For domains where the response variable is continuous, response surface methods
can be used. Chapter 5 illustrates such an example. However, for route planning
problems that involves some type of discontinuous surface where factors such as
alternative routes and alternative strategies exist, the standard simulation methods
can not be applied.

In general, the total number of computer runs, S, required for a replicated, sym-

metrical experiment [38] is

S =p(a)(g2) - - (g) (2.2)
where
p = number of replications
g; = number of levels of ith factor,71=1,2,...,k

k = number of factors in the experiment.

For a typical route traversal simulation we can express the computational com-
plexity of a single run for route R;, in the worst case, as follows (given that we are

using time slicing),

D24

_ QdiStR].
#(R;) =0 ((Numso + L) —Adist> (2.3)

where
distg, = is the total length of route R;
Adist = is the size of time slice At * Speed(t)
Numg, = is the number of stationary objects previously calculated
L = is the total number of moving objects in the simulation.
Thus, the total time complexity of the experimental part of the SBP algorithm

will be, in the worst case,

N
0 (ZS - ¢(R,-)> . (2.4)
=1
In summary, we can save time in two ways: one by reducing S or by reducing

#(R,;) while still obtaining meaningful results. We first present various heuristics in

reducing S:

e Reducing the number of factors:
For our problem domain, routes, behaviors and the planner’s speed are some
candidate factors. By setting any one of these factors to be a constant, we are
effectively reducing the number of factors. Because, setting a factor to be a

constant implies that ¢; = 1.

e Reducing the levels of ith factor:
Reducing the number of levels of the ith factor from A to B reduces S by a factor
of A — B. For instance, using some heuristics, we can prune away unpromising
routes before they are simulated and thus resulting in the reduction of the

number of levels of the route factor.

D25

e Reducing the number of replications:
The number of replications depends on many factors. Most of all, it depends on
the type of output analysis method used (i.e. what is the analysis criteria for
obtaining the correct selection of the best alternative?). Some different output
analysis methods we have employed are discussed in section 2.2.3. Another way
to reduce the number of replications is heuristic sampling or controlled sampling
of the uncertainties. This way, we can converge on the answer faster than
sampling purely by random. The number of replications will partly depend
on the randomness of the data. The wider the range of varied answers, the
lower the confidence level will be and therefore, will need additional number
of replications. Although in some cases where the input variables create an
unstable environment, the additional number of replications will not make much
difference in reducing the interval width. In effect, the number of uncertain
objects in an alternative greatly affects the number of replications needed to

reach an acceptable level of accuracy.

Next, we discuss some ways to reduce ¢(R;), the total simulation time spent
during the evaluation process. In time critical situations, the quality of the desired

information may be sacrificed to meet a given time constraint.

e Increasing the size of the time slice At (assuming the simulation is based on
time slicing). Speed up will result at the expense of accuracy since the longer

the time slice, the faster the simulation will be.

* Reducing number of stationary (Numy,) to be simulated for route R;. Although
the actual number of objects involved in the planning problem can not be
controlled, we attempt to reduce this set to a minimal size while still obtaining
meaningful data. Acquiring this minimum set of objects to be simulated can

be done using the following structures:
D26

B
O

Figure 2.2. Dynamic PlanSim Window

+ /
~
'S

MaxDRange + |

DRange + 1

— Dynamic PlanSim Window
— Static PlanSim Window

- SD([’t)

Dynamic PlanSim Window is a rectangular area that includes all stationary
objects that may be affected by or effect the moving object. Every moving
object has a Dynamic Plansim Window and for every moving object D;, we
will denote its Dynamic PlanSim window as DW,. It is expected that area
covered by DW, will change over time. Stated more formally, let Dj(z,y,t)
denote the fact that D,’s location is x,y at time {. Let MaxDRange be the
maximum detection range (or range of interaction) of all stationary and moving
objects. Then the DW, is defined by the rectangular area whose left top point
is (£ — MazDRange — o,y + MazDRange + «) and right bottom point is
(z + MazxDRange + o,y — MazDRange — «). Figure 2.2 shows an example
window with four radar sites R1, R2, R3 and R4. Then, DW, will contain
R1, R2 and R3 but not R4 since the center location of R4 is not inside the
window. As shown, DW, can include stationary objects such as R2 which will
not actually be affected by D, since it is out of R2’s range. This occurs when the

distance between D; and the center of a stationary object O is greater than the

D27

radius of O. By checking the distance between D, and all stationary objects, we
can build a more accurate set of DW,. However, this should only be done if the
number of stationary objects are very large and the efficiency gained exceeds

the overhead of performing this additional test.

Static PlanSim Window is a rectangular area that remains unchanged through-
out one simulation run. If the planning problem does not involve alternative
routes, then the static plansim window will remain unchanged for all repli-
cations since it will essentially include all the objects of the environment. If
alternate routes are involved, we create a window for each route R; which
we will denote as SPWpg,. SPWp, includes the route and all stationary ob-
Jects that may affect the planner object. Let route R; consist of m points
(Zk,Yk),1 < k < m and line segments which connect them. We then compute

the window using the following procedure.

1. Compute MinX = min{z|zx,1 < k < m} and MaxX = maz{z|z;,1 <
k < m}. Compute MinY and MaxY in the same way. Now the bounding
box of route R; can be defined by these points where the left top corner

is (MinX, MaxY) and the right bottom corner is (MaxX, MinY).

2. Extend the boundaries of this box by enlarging it by MazDRange cal-
culated above. Thus, the Static PlanSim Window’s left top corner now
becomes (MinX —MazDRange, MazY + Maz D Range) and right bottom
becomes (MazX + MaxDRange, MinY — MazDRange).

3. Create the set SPWkg, for each route R; by finding all stationary objects
who belong inside this box. Figure 2.3 shows a typical Static PlanSim

Window.

D28

A Goal

Royte Ri

1
P——

MaxDRange

Start
MaxDRange

Figure 2.3. Static PlanSim Window for Path 1

SDy, is the set of stationary objects such that for a single simulation run,
SD(4 c {OUO} and is within the PlanSim window of a moving object D; at
time t. The degree that the performance improves by updating the PlanSim
Window and the set SD; for every §t will vary depending on the total number

of stationary objects.

Number of moving objects that need to be simulated is the entire set D whose

size is L.

If there is no previous simulation history to base it on, we must obtain the
total number of stationary objects from the Static PlanSim Window for R; as
described in section 2.2.1. If some simulation history is available, then we can

calculate the total number of stationary objects to be:

L TT
Numg, = U U SDq. (2.5)
l=1t=0

D29

where ¢ denotes the simulation time and 0 denotes the begin time and T'T

denotes the end time of the simulation.

e Although it is not explicitly shown in 2.3, the level of detail of the simulation
object models considerably affects the overall simulation time. Simulation of
objects at the lowest level of detail will obviously require the most amount of
time. We can save time by using aggregated or abstract models where possible.
For example, for the combat simulation of two air planes, we can either simulate
them at the lowest level of detail such as simulating each event of gun fire,
missile fire and so on or we can simulate the combat result by simply sampling
from a distribution. This probability distribution can be constructed based on

expert knowledge or can be uniform (random) if no such knowledge is available.

The distance of the route (distg;) is something that the planner cannot control
or reduce. However, by distinguishing routes based on their distance, we can build
experimental strategies based on this information. Depending on the particular prob-
lem domain, the effect of the route distance on the simulation time varies (e.g. the
relation may not be strictly linear as shown in figure 2.4). Thus, the Executive must
make a decision as to where the time must be saved, either in S or ¢(j)s, depending
on which is dominant.

We now present an approach which can produce simulation results within a given
time constraint. The approach is best explained in two phases. In the first phase,
we perform a set of n replications. It is hard to tell what is a good value for n but
20 is a commonly used number in simulation [25]. While the n replications are being

performed, the CPU times of each replication for each route R; are recorded?.

%An issue exists whether CPU time is a good measure since it can vary depending on the load
of the computer or the network.

D30

CPU Time vs Route Length
220 T T T

200}

Avg CPU Time (msec)

-

n

o
T

100

80 L L L A .) L
500 1000 1500 2000 2500 3000 3500 4000 4500
Route Length

Figure 2.4. Plot of average cpu time vs route length

In the second phase, we make a decision as to which output analysis approach
(strategy of performing replications and choosing the appropriate stopping condi-
tions) to use based on the expected simulation time and the current remaining time.

Before we go on to describe the algorithm, we define some variables:

e mCPU(j) - denotes the mean CPU time over n replications for route R;. Instead
of the mean, other measures such as maximum CPU time of R; can be used if
you wish to take a conservative approach. We can also gather some sample data
and draw a relation between the route length and the mean cpu time needed to
simulate the route. Figure 2.4 displays such a graph which was obtained from
the simulation trials in chapter 6. Here, we observe that the mean cpu time
grows more slowly than the route length. Note that this graph only represents
one application domain and is likely to be different based on factors such as the

domain, the type of models and the number of objects.
e T - is the given time constraint.

e Time_Left - is the remaining time to perform the simulations.

D31

e Time_Used - is the time used in the first phase.

e Tot_Needed_Time - refers to the total simulation time (real time) necessary in
order to produce results under the “Selecting best of k systems” (SelectBestk)

algorithm.

e Time_Needed_Per_Rep - is the time needed to perform one round of replication

of all the alternatives.

e Min RN - is the minimum number of replications among all alternative, as

calculated by the How_Many_More() function.

e How_Many_More(j) - using the SelectBestk algorithm, the exact number of
replications necessary to reach a decision (select the best alternative among k

alternatives) for alternative j is returned.

The basic idea of the algorithm is to perform the needed number of replications for
each route as determined by the How_Many_More() function given that the remaining
time is sufficient for the completion of this method. If the Time_Left is not sufficient,
then we perform as many replications as possible given the time allowed. As the
replications are performed iteratively, we also try to eliminate any alternatives that
appear to be significantly worse than other alternatives. With the latter approach,
the idea is to incrementally converge on the answer while trying to meet the time
constraints.

Tot_Needed_Time = 0
Time_Needed_Per_Rep = 0
Time_Left = T - Time_Used
Min_RN = RN(1);

Num_Routes = N;

FOR each Route j (1 <= j <= N)

RN(j) = How_many_more(j)
D32

Time_Needed(j) = RN(j) * mCPU(j)
Tot_Needed_Time = Tot_Needed_Time + Time_Needed(j)
Time_Needed_Per_Rep = Time_Needed_Per_Rep + mCPU(j)
IF (RN(j) < Min_RN)
Min_RN = RN(j)
IF (Tot_Needed_Time > T)
WHILE (Time_Needed_Per_Rep < Time_Left)
FOR (Remaining Alternatives)
Perform replication
Decrement Time_Left
Eliminate any significantly worse alternatives
Update the Remaining Alternatives set
Update Time_Needed_Per_Rep
with the new set of remaining alternatives
ELSE
SelectBestk()

The general method of SelectBestk is explained in more detail in the next section.

2.2.3 OQutput Analysis blocks : Replicator, Evaluator, Analyzer

Obtaining the right types of statistical analyses is just as important as performing
the right types of simulation runs. With simulation, several different interpretations
can be obtained from the same output data. This is the rhain concern of output
analysis and is a distinct feature resulting from using simulation. Different analysis
methods apply depending on whether a simulation is terminating or steady state.
Because plans have a definite start and an end time, ours are terminating simulations.
Suppose we are simulating k alternatives or systems. We describe in the following
our current strategy for obtaining the appropriate outputs and their analyses.

Replicator

Replication provides the easiest form of output analysis. Because our domain

is stochastic, we must perform n runs (replications) for each alternative 7, each jth

D33

replication generating a sample value for an output variable Xij. Different random
number streams are to be used for each run so that the results are independent across
runs. For a sufficiently large n, due to the central limit theorem [25], the random
variable A will be approximately normally distributed. This assumption allows the
use of confidence intervals which is later calculated in the Evaluator block.

Another issue is using common random numbers (CRN) to provide a controlled
environment for comparison among alternatives. This is to eliminate any “environ-
mental differences” that can exist between different simulations. CRN is a standard
variance reduction technique in simulation and we use it here across different alter-
native route plans within the same replication so that we may converge on the final
answer faster.

The Replicator block controls the replication environment by controlling the ran-
dom number streams for each replication. Depending on how the Trial block proceeds
with the simulation, the designer may choose to vary the random number streams
either in between each execution of the Trial block or within a single execution of the
Trial block. In the air force route planning system in chapter 6, for example, a single
execution (or replication) of the Trial block consists of simulating all alternatives
using a common random number seed. The next time the Trial block is invoked, the
Replicator will provide a different random number seed so that a different environ-

ment will be created in the next replication.

Evaluator

In its simplest form, the Evaluator serves as the accumulator of any relevant
simulation data that is produced from the Trial Block. If the objective function
within the Trial block produces a set of scores for each alternative, a straightforward
way 1s to total the scores produced from the replications for each alternatives. Other

relevant data such as elapsed CPU time for simulation of each alternative may also

D34

be accumulated so that the Executive block may later analyze and predict future
time usage.

Analyzer

Based on statistical criteria (e.g. highest mean, smallest variance, etc.), we can
consider several alternate plans and choose the “best” plan for execution. Criteria
other than statistical in nature can also be imposed, that are based on heuristics or
expert knowledge.

This block is primarily responsible for analyzing data that was accumulated in
the Evaluator. Different analysis methods may be used here based on the user’s re-
quirements. The mean, the standard deviation, the variance and confidence intervals
are some measures that we can acquire. For most of our applications, the mean of the
replication results serve as the basic “data” point in our response surface or graph,
representing the goodness of a plan. Variance can be a measure of predictability or
stability when the variance is small. Confidence intervals are useful because given a
sample output distribution and a confidence level z, it gives you the interval in which
you can say with z % confidence that the real mean lies within the interval.

Again, let X;; be the random variable from the jth replication of the ith system
or alternative. Then let

Xi;

() = 1=l i ,
Xi(n) = 2221 (26)
be the sample mean which is an unbiased estimator of u; (i.e. = E[X;(n)]). Also,

let the sample variance be

?:1[Xj - 7(")]2

n—1

S2(n) = (2.7)

Then, borrowing heavily from Law and Kelton [25], we calculate for any n > 2,

100(1 — «) percent confidence interval by

D35

5%(n)

n

Y(n) + t'n—-l,l—a/2 (28)

where t,_11_q/2 is the upper 1 — /2 critical point for the ¢ distribution withn —1
degrees of freedom. These points are given by a students ¢ distribution table which
can be found in [25]. The quantity that is added and subtracted from X(n) in
equation 2.8 is called the half-length of the confidence interval. It is a measure of how
precise we know p. As shown in equation 2.8, the half-length is usually decreased by
a factor of approximately 2 when the sample size n is increased to 4n.

Using the confidence-interval approach, there are mainly two ways to compare
among k systems or alternatives that are discussed in the literature [25]. We discuss
the two methods here and later compare their differences in terms its efficiency and
accuracy through a sample implementation in chapter 6. Since we are trying to
select the best out of k alternatives, we must detect and quantify any significant
pairwise differences in their means. First, let y4; = E(Xj;). An approach is to
form confidence intervals for the difference p;, — wi,, for all 4, and i, between 1
and k, with 4; < 45. Since there will be k(k — 1)/2 individual intervals, each must
be made at level 1 — a/[k(k — 1)/2] in order to have a confidence level of at least
1 — a for all the intervals together. This is because of Bonferroni inequality which
implies that if we want to make ¢ number of confidence-interval statements, then each
separate interval should be made at level 1 — a/c, so that the overall confidence level
associated with all intervals’ covering their targets will be at least 1 — . Thus, in
the first “iterative” approach, we iteratively continue the set of n replications while
throwing away alternatives that are significantly different® and also worse than all

other alternatives. This approach, although quite accurate in terms of the results, can

3two means are considered significantly different if the confidence interval for their difference
does not (or misses) contain zero

D36

include unnecessary number of replications due to the fact that a constant number
of replications is performed uniformly across the current set of alternatives.

The second approach, which we call the “non-iterative” approach (also called the
“Selecting the Best of k Systems” approach) selects one of the k systems as being the
best one while controlling the probability that the selected system really is the best
one [25]. Let p;, be the ith smallest of the p;’s, such that pi, < pi, < -+ < pi. The
goal is to select a system with the largest (in our case) expected response (score), pi,.
Let CS denote the event of Correct Seléction. The inherent randomness of the Xj;s
makes it hard to say that we are absolutely certain of our CS. Thus, we prespecify a
probability P* of CS such that P(CS) > P* provided that u;, — u;_, > d*, where
the minimal CS probability P* > 1/k and the “indifference” amount d* > 0 are both
specified by the user. If y;, and p;,_, are very close together, we might not care if we
erroneously choose system k — 1 and thus avoiding a large number of replications to
resolve this unimportant difference. The procedure stated below has the nice property
that, with probability at least P*, the expected response of the selected system will
be no smaller than p; — d*.

The statistical procedure for this approach, involves two-stage sampling from each
of the k systems. In the first-stage sampling, we make ng > 2 replications of each
of the k systems and acquire the first-stage means and variances using the standard
method. For ¢ = 1,2,..., k, let the mean for system 7 be X',-(l)(no) and the variance for

system 4, S?(no). Then we compute the total sample size NV; needed for system i as

o= 1[50 o9

where h; (which depends on k, P*, and mg) is a constant that is obtained from a

table. The table in [25] provides values of hy for P* = 0.90 and 0.95 for ny = 20

D37

and 40. Next, we make N; — no more replications of each system : and obtain the

second-stage sample means as

N.
2 jmno+1 Xij

_1’(2)(Ni - ng) = N; — ng

(2.10)

Since each system 4 may involve different number of replications, we must weigh

the means from each stage accordingly. We define the weights for the first stage

Wy = 22 [1 + \J 1-— _]& <1 _ (Nz - nO)(d*)2>] (211)

N; o h%Siz (m0)
and for the second stage Wy, = 1 — Wy, for i = 1,2,...,k. Finally, we obtain the

weighted sample means

X,'(Ni) = Wil)_(,-(l)(no) + VV-[QX,-&) (N, - no) (212)
and select the system with the largest X;(NV;).

2.3__Rule-based Systems and SBP

As part of our effort to answer the question why SBP(Simulation-based Planning)
is a worthwhile method for route planning, we compare and contrast our method
with rule-based systems. Rule-based systems have been used in several planning sys-
tems [35, 22]. However, when there are large degrees of uncertainty and also infinitely
many variations of the inputs, thus requiring the system to consider infinite number
of situations, rule-based systems seem to be inadequate. We claim that simulation
can help in producing better solutions in such environments and in particular for the
route planning domain. There are several advantages and disadvantages of rule-based

systems. Our intent is to compare and contrast with SBP to find out how the SBP

D38

methodology can be used to support conventional AI methods such as a rule-based

systems.

e Coverage of domain:
According to Gonzalez and Dankel [7], rule-based systems may not be appro-
priate for certain domains~ “domains that contain so many variations of the
inputs where a system needs to consider and represent nearly infinite number
of situations.” Covering such domains would require tens of thousands of rules
to be developed, verified and maintained. “Developing such a knowledge base
would be an extremely difficult process, even while ignoring the problems of
its verification and maintenance” [7]. The air traffic control domain, an exam-
ple domain suggested by Gonzalez and Dankel [7], contains potentially infinite
number of situations given the potential number of air planes, their locations,
types and speeds etc. Thus, to reason about all possible situations, you need
(in the worst case) as many or more rules to represent all possible outcomes
of plan executions. Using SBP, you model and execute individual objects, us-
ing whatever modeling paradigm that is suitable, in response to every possible
situation and gather the effects of execution as the outcome. This is the first
advantage of SBP as discussed in section 2.1. We demonstrate this feature by

the following example.

EXAMPLE:

This example is from the domain of military mission planning for Air Force
mission. Let us assume that the planning system is given a set of alternative
routes and the planner’s role is to evaluate and suggest the best route. Let
us assume that a route goes through a radar site. In the following, we denote
the enemy force as the ‘red force’ and the friendly force as the ‘blue force’. In

general, this is bad because 1t gives the red force a chance to send a red aircraft

D39

after the blue aircraft that is flying on the route. This can be expressed as a

rule somewhat similar to the following:

IF route crosses a radar coverage area

THEN hit probability is significant

However, there may be several exceptions to this rule. If, for instance, no red
aircrafts are in the vicinity, or if red aircraft’s current location and its max speed
is such that it cannot catch up to the blue aircraft or if all the red aircrafts on

the ground base are inoperable then hit probability is likely to be not high.

To handle this, additional rules or conditions are needed:

IF route crosses a radar coverage area AND
(no red planes within x miles OR
red plane’s max speed is too slow OR
its location is too far away OR
no more operable planes on the ground)

THEN hit probability is NOT HIGH

With simulation, all of the above comes as a result of executing each models

individually and seeing the output results of the simulations.
— For example, the radar site model will have a logic model where if a red
is detected then it notifies any red planes that are reachable.

— If there were any red aircrafts that were able to receive the order to inter-
cept the blue aircraft, then it will use its own internal behavioral /physical

model to pursue the blue aircraft.

D40

— Conditions such as the red’s max speed being slower than blue and not

being able to catch up will show up as a result of the simulation.

— If either all contacted red planes are inoperable or if no red planes exist,
by individual planes not being able to respond and therefore resulting in
no counter action by the red force, the resulting simulation will show a

positive result.

Thus, in SBP, we do not have to explicitly reason or state what the consequences
will be for each particular situation and action combination. However, this can
come at the expense of modeling the knowledge at a lower level of granularity

and perhaps requiring extensive time in computing the results.

The majority of the gain is in the Planner Object (Blue plane). SBP relieves
the burden of having to reason about individual consequences beforehand by
allowing the consequence to be observed via simulation. Often times, the prob-
lem with building an expert planning system for a complex domain like the
military mission planning is building the expert knowledge-base itself. With
SBP, the expert knowledge and their qualitative model can be obtained for one

object at a time which can make the process easier.

Other non central object models are expected to have equally complex knowl-
edge as a rule-base as far as the behavioral aspect of the model goes. However,
again, with an addition of a physical model which may include equations for
motion, fuel consumption and etc., along with the ability to sample appropriate
probability distributions for uncertainty, SBP can reason about plans at a level
that is much clo‘ser to the execution level, which is one of the main advantages
of using simulation to evaluate plans. SBP can also represent abstract behavior

and logic by incorporating traditional Al symbolic models at a higher level.

D41

Consequently, if 1) the problem domain does not involve any kind of uncer-
tainty; or 2) the required answer is only at an abstract level; and 3) there is no
complex interactions among objects; then a higher level reasoner like rule-based

system alone will be sufficient.

Planning for hypothetical situations

Most knowledge-based systems represent associational knowledge. Such knowl-
edge is a set of IF THEN rules that is based on an expert’s heuristic ability or
knowledge that was acquired mostly through observations. The expert may not
understand the exact internal process but has the ability to associate the correct
input/output pair for most, if not all, situations. As pointed out by Gonzalez
and Dankel [7], this type of shallow knowledge is inadequate for solving new and
previously unexperienced situations. If the expert had the theoretical (deep)
knowledge, he would be able to solve the problem using this knowledge. Then,
what do most shallow human experts do in such cases? They often perform
what is called “trial and error.” By subjecting the real process to a series of trial
and error tests, they find a certain input combination that produces the desired
output. Much like what we do when we try to find a route through a maze,
we try different alternative routes until we find one that succeeds. Because
the maze is so complex, we do not attempt to think in one step what the best
route is. This is very much similar to SBP in that SBP makes simulation trials
and records the errors until the best one is found. There is a pitfall here in
that the experiment may not be valid if the model does not correctly represent
the actual process. And this is an issue that must be addressed in the future.
But given that it does, SBP tries different input combinations (sequences of ac-
tions) to see what kind of outputs are produced. In addition, SBP captures the

uncertainties in the environment (whether it is due to incomplete information

D42

or instability) through well established simulation methods such as probability

sampling and replication.

Because of simulations’ ability to experiment hypothetical situation-a direct
result of 1~, SBP is still able to plan routes for hypothetical situations which the
expert has never experienced. Much like how we simulate different hypothesis
or experimental systems to find out their properties, we can simulate using
each objects model to study the results of a plan execution in hypothetical
situations. For example, SBP is an ideal candidate if one wants to plan for an
aircraft whose weapon system has Just been developed (and therefore no expert
has any experience with this system or its effects) and only a simulation model
exists. Other possible examples are when either the terrain or the weather is
in a state in which the SME has never experienced, as was the case in Desert

Storm.

e Naturalness of knowledge representation
Naturalness is one of the strong points of rule-based systems. Rules are a
natural way for humans to express their knowledge. Based on a given situation,
experts tell us what to do through rules. SBP does lack this type of naturalness,
the naturalness of being able to express everything in words and logic. However,
what may be unnatural to one person may be natural to another once 3 person
becomes well accustomed to certain modeling types. We believe that by using
multimodeling a user can choose whatever model type he finds most natural

and easy to use which may not necessarily be in symbols or in logic.

Rule-based approaches lack the ability to modify/ refine/adapt its knowledge to
specific situations. SBP on the other hand lacks “smartness” or “heuristical knowl-

edge” or “symbolic reasoning” capability. One may view SBP as a brute-force

D43

method, in that a naive SBP system will simulate all possible combinations of sit-
uations on a particular route in order to evaluate it. Thus, it may waste effort in
simulating useless plans. But with the help of appropriate heuristics that will prune
out combinationg that are unlikely or going to do poorly, and using various exper-
imental design methods, we can make SBP smart enough to be practical in real

environments.

D44

CHAPTER 3
A MULTIMODEL DESIGN FOR DECISION MAKING

3.1 A Truck Depot Example

The Truck Depot problem was originally taken from [10]. Since the problem con-
tains both non-intelligent objects (e.g. basin, trucks, valves) and intelligent objects
(e.g. robots or people) in equal emphasis, the problem inspired us to find a solution
to optimization by combining the two fields of simulation (simulating non-intelligent
objects) and Al (simulating intelligent objects) under a unifying modeling paradigm.
Unlike the mission planning domain which appears in following chapters, this prob-
lem lies on the reactive spectrum of planning, belonging in the realm of intelligent
control or decision making.

Figure 3.1 shows the aerial view of the truck depot, which represents the concept
model of system. The depot contains one basin with two input pipes P, and Py,
carrying two different chemicals and one output pipe P;. Each pipe has a valve (W1,
V2 and V3) which controls the flow. Each valve has a servo motor attached enabling
the human operator to remotely close or open the valves. Empty tanker trucks arrive
at the depot and wait until they can move under pipe P to be filled with the mixture
from the basin. When each truck leaves the basin, its cargo is tested. If the truck
has been filled with an acceptable mixture, it leaves the system; otherwise it dumps
the cargo and returns to be refilled. All mixture which overflows from the basin or
the truck is treated as waste. In our version of the problem, the capacity of each
tanker truck is constant. The truck depot’s class model is shown in figure 3.2 and its

instance model is shown in figure 3.3.

D45

Figure 3.1. Concept model of truck depot (Aerial view)

VALVE V,

Intelligent Object

Robot

Human

Nonintelligent Object

Truck Depot

/I\

\|/

Fluid

Container

Controller

Evaporation Rate
Viscosity

Capucity
%Full

Fill()
Empty()

Open()
Close()

Mixture

Basin Tanker Truck Valve

Ratiu

Anpie
Flow Rate

Position()

Figure 3.2. Class model of truck depot

D46

Fills
Mixiure Human Truck Depot Tanker Trucks|

Ratio Capacity
Plan() Amive()
Control() an(]
Fills
Controls
Chemical C 5 Chemical C Valve Basin
Angle Capacity
Flow Rate

= cm(i
P | b

Valve V, Valve Va Valve V4

Controls
Flow of
Controls
Flow of

Figure 3.3. Instance model of truck depot

The intelligent objects control the non-intelligent objects in the instance model. In
our case, the human operator makes decisions and controls the valves in the depot,
while achieving the goal of maximizing the profit of the depot by maximizing the
number of trucks filled while minimizing the cost. The depot is charged for the total
amount of chemicals that flow through the input pipes during the period in which it
is open. The trucks are independent objects which arrive according to an exponential
distribution over the period of time when the depot is open.

We also have the notion of time to consider in our simulation. The start of
simulation time corresponds to an opening time of the depot and the end of simulation
time corresponds to the closing time in the real world. Figure 3.4 shows the control
system of our simulation.

Let us examine the basin and the effect of the valves in more detail. Consider
the basin containing a mixture (as illustrated in Figure 3.5). The two input pipes
Py, P, carry two different chemicals. Pipe P; fills each tanker truck with a mixture
of the two chemicals. Each pipe has a valve (Vj, V, and V3) which controls the

chemical flow. Each valve has a servo motor attached that is controlled remotely and

D47

Empty Full
Trucks Trucks
S Truck Depot S

System

Non-Intelligent Objec
(Basin, Valve, Truck)

Intelligent-Object
(Human)

Figure 3.4. Top view of system

Figure 3.5. Basin containing mixture

D48

simultaneously by the intelligent object. The intelligent object controls each of the
valves by opening or closing them.

The primary goal of the intelligent object is to fill the tanker trucks with an
acceptable mixture while minimizing the system cost. If we further extend this
problem to a reél world situation, we can consider that the owner of the depot is
paid for each truck properly filled and is charged for the total volume of chemical
that flows through P, and P,. Thus, the owner’s goal is to use the least amount of
chemicals while filling as many trucks as possible. All mixture which overflows from
the basin or the truck is treated as waste. Also, any remaining mixture in the basin
after some deadline (e.g. end of the day) will also be waste. And finally, when a
truck contains an unacceptable mixture, the contents are dumped and refilled later.
The mixture is not acceptable (or bad) when the proportions are off by more than

10% from the correct ratio. It is considered acceptable (or good) otherwise.

3.2 Intelligent Objects

Because the arrival of the trucks is dynamic and there is no determined number
of trucks a priori, no type of offline planning is possible. As illustrated in figure 3.6,
we have adopted Brook’s subsumption architecture [5] to integrate the different level
modules. Our hierarchical approach is different from a conventional hierarchical
planner in the sense that each of the levels have access to input and output. Since it
is possible to have conflicting output commands, we need some type of coordination
or mediation [23] among them. Adopting the subsumption architecture’s method of
mediation, the outputs are suppressed by a higher level when the higher level makes
an overriding decision. In the original version of the subsumption architecture, a time
period is specified, during which the output will be suppressed. However, because
our simulation is discrete, we will allow the output to be suppressed by a higher level

for one time step until the next event arrives and causes another output.

D49

LEAST CRITICAL

Vi, V2
* State of Basin OPTIMAL
HEIGHT
CONTROL
)) Level 1
VI1,V2
MIXTURE U/
State of Basin CONTROL
Level 0
Sute | ExcePTION V1. V2 \SJ
of CONTROL V3
v Basin
MOST CRITICAL

Figure 3.6. Multimodel planner

The multimodel planner has multiple levels that are divided based on how critical
the reaction of each level is to the overall success of the planner. The levels also
reflect the reactivity of the control in that the lowest level module is the most reactive
module whereas the highest level is the least reactive. In general, however, this may
not always be the case. The least reactive module may contain the most critical level
of control in the system. The following hypothetical example illustrates a typical
case where the more reactive modules are also more critical to the overall success.
For example, when they plan deliberatively to decide where to turn while driving or
controlling the car at the same time. If the car reaches a red light before the turn, it
is more critical that the driver react and stop at the red light than worry about the

turn.

3.2.1 Exception Control

The Exception Control module exists at the lowest level in the hierarchy, which
is the most reactive and the most critical. In our problem, there are two critical
situations. First, overflow either from the basin or the truck must be avoided since

spilled mixture can never be recovered. Second, unless it is close to the end of

D50

D
E= |emery NORMAL FuLL

of 9
Membership [\ / \ /
4 4 4

25 50 kA 100 % = Full Capcity of Basin
Byo (input)

Figure 3.7. Fuzzy set for mixture height

Degree NO-CHANGE OPEN
of
1
1
1

CLOSE
Membership X ><
1 I\ L
T 1)
-1 0

Valve 1,2 Controt Signal

Figure 3.8. Fuzzy set for valve control

simulation time, the planner should avoid having an empty basin since no truck can
be filled. The Exception Control takes the state of the basin as input, which is
the volume of the mixture in the basin, B,, and the volume of the mixture in the
truck, Tyo;. With By, fuzzy logic [45, 44] is used to infer whether the basin is in
an OVERFLOW or EMPTY state. With T,,, fuzzy logic is used to decide if the
truck is in an OVERFLOW state. Only when these conditions arise, does Exception
Control react and sends an output command (CLOSE or OPEN valve V;,). NO-
CHANGE —which corresponds to a null signal— is sent otherwise. The fuzzy input
and output sets for OVERFLOW CONTROL of the basin are illustrated graphically
in figures 3.7 and 3.8.

At this level, the output fuzzy set is identical for both valves V; and V,. Because
when an overflow (or empty) occurs or is about to occur, both of the valves need to
be closed (or opened) at the same time. To control the overflow of the truck, the

volume of the mixture in the truck is monitored and inferred by fuzzy logic to be

D51

MixtureControl

r=R
(V1,V2)
1 = Open
0 = Closed

Vi: Closing
V2: Open

V1: Closing’
V2: Opening

r=hl/h2
R : goal ratio

h1i : total volume from V1 O
h2 : total volume from V2 r=R

Figure 3.9. FSA for Mixture Control

either in the state NOT_FULL or FULL. The output set for valve Vj is similar to the
one for valves V; and V,. Fuzzy logic seems well suited since we are not concerned
precisely when these events occur, but rather the appropriate time to start monitoring
and controlling to prevent overflow. The fuzzy logic model best mimics the actual

performance of the human operator at this level.

3.2.2 Mixture Control

The Mixture Control module is responsible for maintaining the correct ratio of
the two chemicals in the basin. Initially, the planner is given a ratio R which is to
be maintained throughout the simulation. The mixture is considered acceptable and
to be of the correct ratio if the actual ratio r falls between the range R — 5% and
R + 5%. The type of model used for Mixture Control is a finite state automaton as
shown in figure 3.9. In the figure, the current state of the valves is represented by the
tuple (V;, V») where V;, can be one of the following Open, Closed, Opening, Closing.

Depending on the current state, the next state is reached by choosing the appropriate

D52

transition. If the next state reached is a transition state (state that contains one or
more valve settings ending with ing), an output command is sent that will actually
create the event to change the physical state of the valves. For example, at time
t, the current state is (Open,Open). Then at time ¢ + 1 (i.e. the next even time),
the input is (r,1,1). If 7 < R, the Mixture Control module will switch the current
state to (Open,Closing). The current state of the FSA will stay at this state until
the input is (r,1,0). There is an implicit self loop (which is omitted in the figure)
that transitions to itself when the input is anything other than (r,1,0). When the
input becomes (r, 1,0) at some time ¢ + n, where n is the time delay for the valve to
be totally closed, the current state switchs to (Open, Closed). The input (r,1,0) is
a confirmation from the basin model that the commands were properly carried out
and that valve V; has successfully closed.

Once the ratio of the mixture becomes acceptable and close to its goal ratio R,
Mixture Control will send commands to close all the valves to maintain the steady
state. However, the output command may be suppressed by the higher level, therefore
never reaching the basin model. This may also be the case for the Exception Control
module. When sending the output command, the Mixture Control module should also
consider the output coming in from the Exception Control module. If the Mixture
Control module decides that its output is more critical, it will suppress the lower
level output and replace the command with its own. For more detailed explanation

of the suppressor function, refer to [5].
3.2.3 Optimal Height Control

Finally, the Optimal Height Control module controls the height to maximize the
profit. Because this module is less reactive and involves more symbolic knowledge
and reasoning (heuristics) than the other lower level modules, rule-based reasoning

is best suited for the task. The notion of optimal height is time dependent. Since

D53

the simulation has a start and an end time, the intelligent object can have different
strategies for maintaining the height at different times. Another consideration that
the Optimal Height Control module takes into account is the speed of chemical flow.
The flow rate ofA valve V3 depends on the height of the mixture in the basin. Since
our Optimal Height Control module uses heuristics, optimality is not guaranteed.
Included in this module, is the Evaluator which evaluates the overall profit of the
system, during and after the end of simulation. The profit is (amount of reward per
unit of volume)*(total volume of good trucks) — (amount of money charged per unit
of volume) * (total volume of input). This function is included as part of the Optimal
Height Control module. The formula used is Profit = N(V,) — C(V;) where N is
the amount of reward per unit of volume and C is the amount of money charged per
unit of volume. Vi represents the total volume of good trucks and V; represents the

total volume of input.

3.3 Non-Intelligent Objects

3.3.1 Model Design

Modeling the basin poses several challenges. The model state includes continuous
and discrete variables, constraints, and functional relationships.

The volume of the mixture in the basin changes continuously throughout the
simulation. The input signals that control the three valves give continuous outputs,
but they change at discrete times. The tanker trucks move through the system as
discrete objects and are constrained when waiting to be filled because: the signal for
valve V3 must open the valve; the basin must have enough mixture to fill a truck;
and the filling area must be empty.

We chose a Petri net to model the top level, see figure 3.10. The inputs to the
model are tanker truck arrivals and control signals for opening and closing each of the
valves. The output from the model includes statistics showing the number of trucks

D54

VALVE CONTROL SIGNALS . FULL TRUCKS
Basin

Truck Arrivals

V, Control Signal
V, Control Signal

Truck.Test

V, Control Signal

Basin.Fill Truck.Fill

Figure 3.10. Petri net model of the basin

that were filled properly, and the volume of each chemical that was poured into the
basin during the simulation.

The Truck Queue transition is refined by an S/S/1 queuing model. It was chosen
to model the tanker trucks waiting to be filled. The queue is used to maintain the
trucks arrival order.

The transition Fill Basin is refined by a block model, see figure 3.11. The control
signals are passed to the refining models Valve I and Valve 2 respectively. Each
refining model returns a value representing the control to be applied. The function
block, Mizture Volume in Basin takes the control input and returns a value that
states how many tanker truck loads the basin currently holds.

Fill Truck is also refined by a block model (similar to figure 3.11) that shows
the relationship between valve V3 and the Mizture Volume in Truck function block.
Valve V3 takes as input the control signals, OPEN_V8 and CLOSE_V3, then returns

the amount of control to be applied due to the current state of valve V5. The function

D55

Container::Basin:fill

V, Control Signal v
—_— 1

Mixture Volume in Basin | .| 5,

V,Control Signal

Figure 3.11. Refinement of transition Fill Basin

Vl V|=l

8=1|—>

V=0

Figure 3.12. FSA model of valve V;

block Fill Truck takes the control value as input and returns a value when the truck
has been filled.

Each of the function blocks are refined by a finite state automaton. There are
five FSAs, but the three FSAs that refine the valves are similar to the refinement of
valve V.

The function block Valve V; is refined by the FSA shown in figure 3.12. The input
for this FSA is the control signal for the valve Vi, (V; =1 or V; = 0). The FSA will

change state if an internal transition is detected, (6, = 1 or 6§, = 0).

D56

Mixture Volume in Basin
V, V, V, =3V

basin basin truck basin
- ~ "4—~‘\‘ ’— \‘ ’r‘_‘\

>= Vlruck >=2

~~

Vbasin < Yruck Voasin <2Vick Viasin < 3Veuek Voasin = 3Virek

Figure 3.13. FSA model of the volume of mixture in the basin

The Fill Basin function is refined by the FSA displayed in figure 3.13. The input
for this FSA is the amount of control that is being applied to the system by valves
Vi and V5. The output is how many truck loads of mixture the basin contains.

The function block Mizture Volume in Truck is refined by an FSA with three
states. The input to this FSA is the amount of control applied by valve Vj, the
system output is the state of the truck, whether the truck is FILLING, FULL or
OVERFLOWING.

The control equation & = Az + Bu is used to model the continuous state variables
in the system. Where z is the subsystem state, u is the control from the valves, and

B is the amount of control being applied.

3.3.2 Model Execution

A coordinator is used to create and execute the multimodel system. After each
level of the model is created, the levels are connected to their refining models, then
each level is initialized. Our initial conditions for the truck depot example are: the
basin is empty, the valves are closed, and no trucks are waiting to be serviced. These
initial conditions can be changed, however, depending on the goal of the simulation.
The coordinator’s task during execution is to dequeue events from the FEL and direct

the event to the model specified.

D57

CHAPTER 4
ADVERSARIAL ROUTE PLANNING

4.1 Mission Planning for Computer Generated Forces

For planners that work as part of the Computer Generated Force (CGF) simu-
lation [24] using the Distributed Interactive Simulation Environments, uncertainties
of enemy’s actions have to be handled in real time since the Computer Generated
Forces have to fight against the opposing force (which are normally human trainees)
in real time. As stated in chapter 1, the CGF planning domain selected here is as-
sumed to have complete information of the environment including the enemy and the
terrain. The complexity of the problem lies in the uncertainty of enemy’s action and
varying properties of the terrain. The mission planner presented in this chapter is
an integral part of a larger project of the Institute for Simulation and Training (IST)
called “Intelligent Autonomous Behavior by Semi-Automated Forces in Distributed
Interactive Simulation” which was funded by the U.S. Army Simulation Training and
Instrumentation Command (STRICOM). The goal of the planner is to automatically
derive plans for a CGF command entity node, at the company level initially, so that
the force will provide an Army trainee with an effective training experience. There-
fore, the planner represents a decision making algorithm at the level of a company
commander. Planning is only a small part of the overall project, which includes
efficient line of site (LOS) determination, terrain reasoning, intelligént target acqui-
sition and behavior representation for CGF entities. The planner takes orders from
the battalion level and translates these orders, with a tight coupling with the terrain
analyzer, into efficient plans for the CGF platoon entities. In addition to planning
for its subordinate units, the planner must also be able to monitor the execution

D58

of the plan, react to unexpected situations and replan if necessary. We present a

Simulation-Based Planner that can meet such challenges.

4.2 Planner Architecture

Figure 4.1 displays the architecture of our planner in relation to the IST CGF
Testbed [24]. Each commander in the IST testbed is simulated by a Command
Entity (CE). The Planner performs major functions of this entity. The planner has
two phases: the Reactive phase and the Planning phase-where a phase is a group
of states that collectively display a behavior. Only one phase is active at any given
time and the starting phase is the Reactive Behavior. The decision as to which phase
becomes active is made by the current active phase based on the inputs. There is
no single “main” algorithm that controls the whole process. Thus, the decision is
made in a distributive manner. In particular, the decision to give up planning and
report to a higher level unit is made by the Planning Behavior. The inputs are either
OPORDs! or SITREPs? and depending on the type of SITREPs and OPORDs,
different decisions will result. Each Planner in the CE is made up of the following

components.

4.2.1 World Database (DB)

The World Database contains information about the battlefield. This is not a
complete spatial representation of the battlefield (the Terrain Analyzer (TA) has
this information) but a simplified database which mainly contains information that
is known to the CE (and not known to the TA). Since the TA does not have any
information regarding the location of enemy or friendly units and does not keep track
of the locations, the planner needs to keep track of these locations and the status of

the units in the World Database. This database is created as soon as the CE starts to

1Operations Orders - refer to section 4.3 for more details.
2Situation Reports - refer to section 4.3 for more details.

D59

IST CGF TESTBED
COMMAND ENTITY (CE)

PLANNER
EXPERT
O Sitreps SYSTEM
RULE ; TERRAIN
. REACTIVE BASE ' ANALYZER
Sitreps BEHAVIOR - E Oporder
13
Oporder H '
Sitreps Oporde . : Sitreps

WORLD * Situation Analyzer

DB * COA Tree Generator
* COA Tree Simulator
* COA Tree Evaluator

* Exccution Monitor

Sitreps
Oporder

SIMULATED
WORLD

Figure 4.1. Planner Architecture

exist. Initially it contains its own location and will be updated with new information
as it becomes available to the CE via SITREPs or OPORDs.

The battlefield is a spatial model, divided into rectangular regions represented as
the elements of a matrix. This is a very low resolution of the battlefield because the
purpose of this matrix is mainly to speed up the look up time of unit locations and
other information by organizing the linked lists into regions. Each element of the
matrix is linked to a linked list that contains all the information the CE has about
thé,t region. Each node will have more exact locations along with other available

information such as status of the unit.

4.2.2 Reactive Behavior

The Reactive Behavior module displays reactive behavior necessary for survival
when immediate action is required. This behavior may be different for different types
of entities. The module is initialized with a generic set of behaviors at the start and

may be modified with any reactive behaviors provided by an OPORD.

D60

4.2.3 Planning Behavior

The Planning Behavior module has the ability to generate orders for its subordi-
nate entities from an OPORD given by a higher level entity. This module is made up
of the following smaller modules where the order in which they are presented actually

coincides with the algorithm steps of a typical planning process.

1. SITREP/OPORD Analyzer parses the SITTREP/OPORD to update the
World DB.

e OPORD: is further parsed to generate a list of task(s) to be achieved.

The Situation Analyzer is called next with this list.

e SITREP: is analyzed to decide if any immediate action is required, if
any replanning is required, or if any SITREP needs to be generated. The

Execution Monitor is called with the decision.

2. Situation Analyzer (SA) is a collection of rules that analyze the given situa-
tion using the World DB to generate the appropriate constraints for the ROUTE
or the DEF_TACT_POS call to the TA. The decision as to which of the two calls
to make first depends on problem size reduction. In other words, in a given situ-
ation, the call ROUTE may produce many routes whereas a DEF_TACT_POS
call may have produced few tactical positions. In such a case,-we can first
make a DEF_TACT_POS call to acquire a set of tactical positions and then call
ROUTE with these tactical positions which will reduce the number of returned
routes due to the given constraints. Thus, the SA will perform some alternate
calls of ROUTE and DEF_TACT_POS to produce an appropriate number of

alternate routes. The COA Tree Generator is called with these alternate routes.

D61

3. Course of Action (COA) Tree Generator uses the set of alternate routes
produced by the SA to generate a COA Tree where the 1st level contains alter-
native subunit combinations. and 2nd level contains alternative route combi-
nations. The following levels can contain other alternatives such as varying the
role of platoons in different formations. We can extend the tree as much as we
want with any other possible alternatives at each level. Also, if time permits,
we may want to add an adversary tree to the 2nd level. This adversary tree
Can represent possible reaction behaviors by the enemy given the current set of
action by the friendly unit. Also note that some alternatives may be omitted

at this stage and later generated during the Simulation/Evaluation step.

Once such a tree is generated, the tree is pruned using various methods and
rules before it is passed onto the COA Simulator. Many alternatives can be
pruned away by using a military expert knowledge system. However, we must
not prune away too much since many alternatives should be left to be explored
via simulation. The purpose of using simulation may be lost if the choices have
been made already. Next, the COA Tree Simulator is called with the COA
Tree.

4. The COA Tree Simulator is invoked to simulate the set of COA trees that
have been generated. This is done by creating a Simulated World and per-
forming the simulation of friendly and enemy units by time slicing between
actions (move, look, fire) and observation by each unit. It is also time sliced
between friendly and enemy units. Different methods can be used in simulating
friendly and enemy units. One method is to allow the enemy units to have
the same planning capabilities as the friendly units but with different tactics.
This method would be quite realistic, but it can be quite time consuming. In
general, a complete simulation will be more time consuming than a temporal

D62

projection using rules. If computing capabilities are limited, we can perform
simulation at different levels of abstraction [26, 16] where each higher level will
use less computational power. Another solution is to let the enemy units follow
a less sophisticated planning process allowing limited intelligence. This is the

approach we are taking for this particular application.

The actual simulation algorithm is as follows:

While (planner active) do
Update entity state variables
Perform line of sight (LOS) check
Engagement check
Update current clock time by AT
End While

The simulator takes each level of the COA subtree and simulates each route
and calculates a score for each friendly subunit per each route. In the current
version, the enemy unit is simulated in a very limited manner. The enemy unit
is assumed to remain stationary and only engage in combat when an opposing
force unit has been sighted. Currently, our method employs the Aggregate
Combat Model [8]. Two important assumptions made in general is the 3 to 1
rule and that each of the units are equivalent in size. The 3 to 1 rule states
that the break-even point is at a force ratio of 3 to 1, (3 being the defender
and 1 being the offender) which is a reasonable assumption in most cases since
a defender is prepared to defend in a favorable terrain. To satisfy the second

assumption, the demonstration mission involves only units in the platoon level.

D63

Since the planner does not currently have access to the TA, the Line of Sight
check is being done by a simple function LOS.check which checks the distance
between two units. At present time, the terrain is assumed to be flat and open,
not affecting the line of sight calculation. With the TA connected, the planner
should be able to have access to a more accurate LOS check which will account
for different types of terrain that may obscure the view. The speed of the units
are currently determined only by the terrain type: ROAD has 100% mobility,
GROUND has 80% and FORD has 50% mobility.

For each course of action, the simulator operates as follows. State variables
defining an entity’s position and orientation are updated at each time slice.
In low mobility areas or areas with a steep terrain gradient, the movement is
slower. Also, for some terrain features, as with fords or chokepoints, a simple
queuing model can be executed to keep track of entities that must wait for
entities that are blocking the path. Service times and speed values are obtained
by sampling from a probability distribution appropriate for the blocked area. A
line of sight (LOS) check and range calculation is done between the entity being
simulated and known enemy locations. If the enemy is within range of certain
weapons (such as a HEAT or Sabot round), an engagement will ensue. We are
unsure as to the level of detail required to simulate the engagement for planning
purposes. However, these may be extended as behaviors such as “seeking cover”
are integrated into the planner. The simulation proceeds, while updating the
simulation time by AT until either the plan has been fully simulated, or the

planner is interrupted.

Initially, the Simulated World is created from the World DB and then the status

of the world is updated as entities are being simulated. The simulator uses the

D64

TA to update the Simulated World. The outcome of the simulation is then fed

into the COA Tree evaluator.

. The COA Tree Evaluator is invoked to evaluate the simulation result by

calculating scores using the following formula:

score = strength of unit + prozximity to OBJ(%)

If at any point in time during the simulation the strength of a unit is below a
certain threshold (5 %), it is considered to be destroyed and no further simula-
tion will be run on that particular branch of the COA tree. Thus, the overall
simulation strategy is branch and bound. Depending on the order of the calls,
however, it is possible to simulate the COA tree in a somewhat depth-first man-
ner. It is possible to simulate the 2nd level of the SPLIT tree before the 1st
level of the NO_SPLIT tree. The each unit’s score is stored in every route_node

of the COA tree representing the simulation result of that particular branch.

Once the evaluation is done, different interpretations can be made on the scores
themselves. To follow the military’s operational concepts of acting with an
initiative, incorporating unpredictability of actions into the planners is a major
task. A possible solution is to allow the planner to choose nondeterministically
among those plans that have evaluation scores above some threshold. Another
important extension is to allow the enemy to react nondeterministically during
simulations so that the evaluation scores will come out differently at different

runs.

. The Execution Monitor

The Execution Monitor is the main driver of the Planning Behavior module.

Its actions are:

D65

(a) Issue the set of chosen subtasks in the plan to each units in an OPORD

format.
(b) Execute its own subtask if any.
(c) If any SITREP is received,

i. Call the SITREP/OPORD Analyzer.
ii. If the decision returned calls for

e immediate action, it is handled by the Reactive Behavior module
which accesses the mini Expert System to react accordingly. In
doing so, the Reactive module also takes into account any Engage-

ment Criteria given in the OPORD.

e replanning, the SA is called to start a planning process with the

newly updated World DB.

e giving up planning at the current level, the CE sends SITREP to
its higher unit reporting of its current status and waits for further
orders.

4.2.4 Expert System

The mini Expert System module contains rules to aid the planning process in
making decisions such as choosing routes, choosing best COA tree, performing anal-
ysis of situations, OPORDs and SITREPs. In the prototype version, very simple
rules have been used and they exist as if-then statements inside the implementation.
As more depth military expert knowledge are acquired, it may become reasonable to

implement the expert knowledge as a separate Expert System.

4.3 Interface between Planner and other Command Entities

Similar to how Operations Order (OPORD) are sent as directives to subordinates

in military Command and Control (C?), the CGF Command Entity is also expected
D66

to receive and send OPORDs. The standard military format for OPORDs contain
considerable amount of overlap throughout the different sections. Since our OPORDs
will be sent as messages within the program and each message has a limited size of
300 bytes, there was need to modify the military standard format to make it more
concise.

A standard military OPORD consists of five paragraphs: Situation, Mission, Ex-
ecution, Service Support and Command and Signal [12]. For our application, we
are mainly concerned with the first three where Situation describes the situation and
missions of enemy forces (if known) and friendly forces, Mission states the mission the
unit issuing the OPORD is trying to achieve, and Execution expands on the Mission
statement by describing the specific tasks to be accomplished by each subordinate
units.

In our OPORD format, the Execution paragraph takes the form of a Synchro-
nization Matrix where the rows represent the tasks for each subunit and the columns
represent different phases of the mission. The Synchronization matrix is issued by
the commander to its subordinate units where individual unit locates the row that
contains the orders for that specific unit and executes the tasks issued to them. Each
unit transitions to the next phase of the mission based upon its own transition code.
It can initiate its own transition: On Own Initiative or it can only transition after
receiving an order from its commanding unit: On Order. A corresponding matrix
to our demonstration order is shown in figure 4.2. This same matrix is sent to all
three companies and each company extracts the applicable row of tasks to be accom-
plished. Since the id number of our company is 1, the orders are contained in the
first row. The second and third rows do not directly affect the planner since they are
orders for company 2 and company 3, respectively. Unless some coordination was

required among the three companies, a company is only concerned with the orders

D67

Phase 1 Phase 2 s Phase n

SEIZE OBJ at DEFEND

Company 11 3,500, 28750 32500, 28750

/N

SEIZE OBJ at 0, MOVE to
38700 40500 32500, 28750

Company 2

MOVE to ; SEIZE OBIJ at

Company 3 ¢
50000 40000 54750, 40100

Transition Code: O On Order
X On Own Initiative

Figure 4.2. Synchronization Matrix for Demo OPORD

given specifically to the unit. Also note that since the prototype assumes there is
only one phase to a mission, phase 2 is also ignored in the current version of the
prototype.

Situation Reports (SITREPs) are another type of order that is sent to the su-
perior unit by a subordinate unit to report either scheduled situations (e.g. when a
mission has been accomplished, when a unit hits a check point, etc.) or unscheduled
situations (e.g. when a threat is identified, when overall combat strength falls below

a predetermined level, etc.).
4.4 Interface between Terrain Analyzer and Planner

As mentioned earlier in section 1, the mission planner is a part of a larger project
at IST. The planner must integrate with many other components in the IST project,

but for the most part it must work with the IST’s Terrain Analyzer.

D68

4.4.1 Terrain Analyzer

The Terrain Analyzer is the planner’s only source of information about terrain
and thus the planner uses the TA quite extensively during the planning process. The
TA is responsible for route planning, finding tactical positions, computing Line of
Sight and answering questions about terrain features. The interface between the TA
and the planner is established by four types of calls; ROUTE, DEF_TACT_POS, LOS
and TERRAIN_FEATURE.

e ROUTE: Given the maximum number of routes, start and end position, the
unit boundary, the minimum percentage of concealment, the mission type and
the direction of approach to the OBJ (located at end position), the TA returns
multiple routes that satisfy the given constraints. Note that the direction of
approach does not apply to cases when the end position does not have an enemy
unit and the mission type is not a SEIZE mission. Any intermediate enemy
position that needs to be avoided can also be given along with a radius and
the TA will generate routes avoiding these locations radius distance away from
the avoid locations. Each returned route has a route id, length and percentage
of concealment relative to the route. The actual route is represented as a
piecewise linear curve made up of a set of line segments. Each line segment
contains not only it’s begin and end points but also the percentage of mobility,
passable width, probability of LOS to the OBJ and the terrain_type (ground,
road, ford).

e DEF_TACT_POS: Given the type of mission, this call requires the TA to pro-
vide locations for a given type of tactical position(s). The current position of
the unit and the OBJ must also be given. There are three different types of

position: SUPPORT_BY_FIRE, DEFENSE, and ATTACK. We have two types

D69

of mission: SEIZE and DEFEND. Finally, the enemy location must also be
provided to the TA for SUPPORT_BY_FIRE and ATTACK positions.

ALOS: This call directs the TA to perform an area to area Line_of sight deter-
mination. Locations 1 and 2 are given, each with Radiusl and Radius2. The
Radiusl describes the circular area centered at 1 and Radius2 describes the
circular area centered at 2. 1_# _PTS constrains the number of points where
LOS should be tested within circle centered at 1. 2_#_PTS constrains circle
at location 2 in the same manner. If the Radius is 0 for both locations then a
simple point to point LOS is performed. The returned data is the probability

of sightings over the #_PTS tested within the two areas.

TERRAIN_FEATURE: This call requires the TA to return all the terrain fea-
tures that are included within the radius of a given point. The planner sup-
plies the TA with a center point and a radius and the TA returns one or
more of the following types as a terrain_feature: ROAD, FORD, GROUND,
CHOKE_POINT.

4.5 Demonstration Mission Scenario

Figure 4.3 illustrates the demonstration scenario. The friendly company 1 (the

company entity receiving the OPORD) is situated at Assembly Area (AA) located

at (50000, 52500). Company unit 1 is made up of 3 platoons: platoon A is made

up of 4 M1 Abrams Main Battle Tanks and each of the remaining 2 platoons B

and C are made up of 4 Bradley Infantry Fighting Vehicles. There are two enemy

platoons: OPFOR(opposite force) platoon A is made up of 4 M1 tanks located at

(32500, 28750) and OPFOR platoon B is made up of 4 M2 fighting vehicles located

at (45000, 46250). The OPORD given to company unit 1 is to “SEIZE the Objective

at (32500, 28750)”. Typically, an area called unit boundaries are given along with

D70

/ / E 25000 EGEND
/é/ § #s 023; xa<'M _________ ,,,,,,, ® o
\ ? ~ \'R 3000 G L ae
\ \ ‘ 7 /#3 _ I .
- N \\& : Al \“ \ & Treeline
/ S o+
)
(@
§ W
X
\ /"‘/{ 50000
=S\ g\\g s

55000 50000 45000 40000 35000 30000 25000

Figure 4.3. Company Mission and Routes

the OPORD. The unit boundaries define the area in which the unit is expected to
operate. The company unit boundaries for company 1 are given as the rectangular
area in the figure 4.3.

The goal of the command entity is to accomplish the mission with minimal loss of
strength. To find a mission plan that will satisfy this criteria, the planner simulates
several alternative plans, compares the results and chooses the best one. However,
these alternative plans need to be generated by the planner first. The planner has to
be careful not to generate too few or too many alternative plans since too few may
not include a potentially good plan and too many may take too much computation
time. Figure 4.3 also shows the various tactical positions and routes that can be
obtained through calls to IST’s Terrain Analyzer. Thus, the alternative plans are
mainly based on two alternatives: different subunit combinations and different route
set combinations. In other words, the alternative plans depend on which unit or units

go on which route.

D71

SPLIT NO SPL

Alternative Subunit 'Y

C.AB , Combinations
N =

3,1 32 41 42 51 52 34 35 45 Alternative Route 202
Combinations (1)

Alternative Route
6- 6- 7- 17- 8- 8- 67 68 78 Combinations(2) 6 7 8

Figure 4.4. COA Tree without Adversary Tree

Figure 4.4 shows the COA tree generated by the prototype. The SPLIT subtree
describes the course of action for a company where the company will be divided.
Given that a company has 3 platoons, the number of routes needed is always greater
than or equal 1. If two platoons go one route and one platoon go another, two
routes are needed in total. If each platoon goes on a different route, three different
routes will be necessary. The 1st level of this subtree will contain all the possible
combinations of splitting a 3 platoon company. Currently, the set of combinations
are read from a data file. The justification is that some heuristics must be applied in
subdividing the company and since there are no expert systems to aid this process in
the prototype, an expert can be consulted in creating the data file using his expertise
and knowledge of the Company’s composition. The heuristic used in this scenario is
not to allow Platoon A to travel alone at any time since M1s are considerably slower
and lower power than M2s. This restricts the SPLIT combination to 4 sets: (AC,B)
(B,AC) (C,AB) (AB,C).

From these combinations, the Create_COA_TREE generates possible combina-
tions of route sets. Since the mission is SEIZE, at least one route should lead the
platoons to an ASSAULT_POS. These routes are 3,4,5 according to 4.3. Thus, the
possible set of route combinations are (3,1), (3,2), (4,1) (4,2), (5,1), (5,2), (3,4), (3,5),

D72

ROOT

SPLIT NOSPLIT

Alternative Subunit
AC,B BAC CAB AB,C ABC

%\ commnmions/N

3,1 32 4,1 42 ase 8 35 45 Alternative Route 3 4 5

Combinations (1)
Adversary Tree (1)
FF FS SF S

S F S smnsm

6 6 Allen}aﬁ\fe Route 6 6
combinations (2)
%\\ Adversary Tree (2) /\ /\
F S F S

FF FS SF SS FF FS SF SS meass

FF - Follow, Follow FS - Follow, Stay
SF - Stay, Follow SS - Stay, Stay

Figure 4.5. COA Tree with Adversary Tree

(4,5). The second level of route combinations in the COA tree contains the routes
that connect each of the 1st level routes to OBJ if possible. For example, route 6
extends route 3 to OBJ. However, route 1 is not extended to the objective because
it’s a SUPPORT_BY _FIRE position.

The NO_SPLIT subtree has a single alternative subunit combination (ABC) since
no split up is allowed in the unit combination. Therefore only a single route set alter-
natives that lead to an assault positions (3,4,5) are possible. The second level routes
are (6,7,8) respectively. No pruning is being done in the current implementation.

Figure 4.5 shows the COA tree generated with the adversarial actions included.

For now, we assume that there are only two possible actions Follow or Stay. Follow

D73

means that the enemy unit will exhibit a behavior of active pursuit, given that it
1s within range. In other words, if the enemy unit is not close enough to actually
detect and follow, the subtree with the Follow behavior will not be any different
from the subtree with the Stay behavior. Stay refers to the behavior where the
enemy will remain stationary in its current location but will still fight back if fired
upon. The different behaviors can be best seen by comparing figures 4.6 and 4.7.
Figure 4.6 shows the case when the enemy is simulated with the Stay behavior. Note
that this is also the basic behavior of the enemy for the simulations of the COA
tree without adversary tree. Figure 4.7 depicts the situation where the enemy unit
1s simulated with the Follow behavior. Assuming that the enemy will continue to
pursue the friendly unit that is traveling on route 4, the shaded polygon near route
4 which shows the area where combat will continue to occur is extended. Thus,
the area of combat in figure 4.7 is larger compared to the shaded area that appears
in figure 4.6 and therefore the score is expected to be lower in the first case. For
the tree in figure 4.5, four pairs of behaviors (FF, FS, SF, SS) are generated in the
SPLIT subtree. A pair is generated because one F or S corresponds to each route
and there are always two routes in each branch of the tree under the SPLIT subtree.
Accordingly, in the NOSPLIT subtree, only a single behavior (F or S) is specified for

each branch.

4.6 Planning Results

From figure 4.3, one should be able to observe that any friendly units traveling on
route 4 is likely to engage in combat with the opfor unit stationed at (45000, 46250).
The friendly unit may not be totally destroyed but considerable amount of strength
may be lost during combat and therefore will result in a lower score. Thus, any plan
that includes route 4 will have lower scores than other plans. Due to space limitations,

we only include some results of interest. We first show the results obtained using the

D74

2 S(XX)LEGEND

3 V Lake

River

35000|

/\ Treeline

Tactical
40000 + Position

'\ Ford
45000

A \ 55000

=T 0

55000 50000 45000 40000

35000 30000 25000

Figure 4.6. Simulation of Stay behavior on Route 4

/ / : ; 25000LEGEND
: S . Canopy

<

#7
/ f / #1 | River
35000

\
B\ .
..... #3 - %\ : 5\.’7% \‘ & Treeline
7 \\\;/ R st w0+ Tactical

Position

45000

< OPFOR “' \ .\ & Ford

55000 50000 45000 40000 35000 30000 25000

Figure 4.7. Simulation of Follow behavior on Route 4

D75

e

COA tree without an adversary tree. This result is for the alternative plans where
the company stays together as a company (NOSPLIT) and travels on a single route
to the objective: (Note that routes 1 and 2 are not considered since they end at

Support_By_Fire positions.)

Result of NOSPLIT routes at phase 1:

[A-B-C 3] : 165.007523
[A-B-C 5] : 131.897141

[A-B-C 4] : 89.443901
Result of NOSPLIT routes at phase 2:

[A-B-C 3 6] : 128.000000
[A-B-C 5 8] : 128.000000

[A-B-C 4 7] : 95.140198

Next, we show the evaluation scores with the adversary tree. The results support
our prediction that route plans which include route 4 is considerably lower in score
than the other alternative route plans. Moreover, of the two subtrees that includes
route 4, the subtree where the enemy was simulated with the Follow behavior is
even lower. Since all the other routes 3, 5, 6, 7 and 8 do not have an enemy unit

nearby, there is no difference in result whether the subtree includes a Follow or Stay

adversarial branch.

Result of NOSPLIT routes at phase 1:

D76

[A-B-C F 3]: 165.007523 * F: FOLLOW
[A-B-C S 3]J: 165.007523 S: STAY

[A-B-C F 5]: 131.897141

[A-B-C S 5]: 131.897141

[A-B-C S 4]: 89.443901

[A-B-C F 4]: 65.971626

Result of NOSPLIT routes at phase 2:

[A-B-C FF 3 6]: 182.000000

[A-B-C FS 3 6]: 182.000000

[A-B-C SF 5 8]: 182.000000
[A-B-C SS 5 8]: 182.000000
[A-B-C SF 4 7]: 119.666664
[A-B-C SS 4 7]): 119.666664
[A-B-C FF 4 7]: 114.666664

[A-B-C FS 4 7]: 114.666664

There are basically four different types of information that is given as input to the
planner at different stages of the planning process. When the planner is first started,
it is given an OPORD, a set of subunit combinations to be used in the generation
of the COA tree, and the initial strength of the individual subunits. During the
plan generation process, the planner will make various calls to the TA and get back

from the TA information such as tactical positions and routes. Once these plans

D77

are generated, the planner simulates them and outputs the final evaluation scores of

alternative plans in decreasing order. The CGF planner prototype currently runs on

an IBM 486 PC and the Sun Unix Workstations.

D78

CHAPTER 5
NON-ADVERSARIAL ROUTE PLANNING

The CGF Mission Planning problem, presented in chapter 4, did not possess a lot
of uncertainty in the way it was defined. To show how SBP can be used in problem
domains that possess significant amount of data uncertainty—including uncertainty
due to noise-we have selected the Mars Rover route planning problem as our second

application domain.

5.1 Rover Route Planning

A major difficulty with the Computer Generated Forces Mission Planning was
the overwhelming amount of domain knowledge that we had to learn which left little
room for experimentation and further refinement of our methodology. In realizing
the problem, we decided to apply our methods to a canonical problem. Route (or
path in robotics terms) planning with mobile robots is a well known problem and
thus is a good candidate. When there is little uncertainty involved, as is sometimes
the case in many robot route planning problems, the existing approaches such as
potential fields [2] do quite well. But, when uncertainties exist in the environment,
these methods alone cannot produce good results. The main algorithm of producing
a graph of traversable paths and searching the graph for a best route still remains
the same, however. The part that is different is how we measure the goodness of a
route. If the goal is to select a route that is the shortest in distance, we can use any
of the standard algorithms that exist for finding shortest paths in a graph. But, if the
problem is in an environment that is unknown or uncertain, we must use a different

method which we claim is SBP.

D79

Figure 5.1. Mars Microrover. Provided by permission of Jet Propulsion Laboratory
[28]

In 1996, NASA plans to launch a spacecraft to Mars to explore the environment
of the planet [28]. The spacecraft will carry an 11 kg rover, called the Microrover,
that will move around the vicinity of the landing site to explore the territory for a
duration of approximately 1 to 4 weeks. Figure 5.1 shows the Microrover traveling
over a rock.

Because the Martian surface is not completely known, JPL is undergoing a process
of performance evaluation of the rover’s autonomous navigation system with varying
terrain characteristics. The Microrover testbed contains the Microrover vehicle and
an indoor test arena with overhead cameras for automatic, real-time tracking of
the true rover position and heading. In the arena, they have created Mars analog
terrains by randomly distributing rocks according to an exponential model of Mars
rock size and frequency created from Viking lander imagery. JPL has decomposed the
rover navigation task into four functions: 1) goal designation; 2) rover localization; 3)
hazard detection; and 4) path selection. Goal designation is expected to be performed
by mission operators on Earth. Hazard detection is largely connected with problems
In sensors such as stereo camera pair and light stripe ranging sensor. And thus,
although the four functions are integrated, we will focus mainly on rover localization

D80

Planview plot of vehicle trajectory
— true rover trajectory

“~~ deadreckoned trajectory

Figure 5.2. Rover trajectory for a run with three rocks

and route selection. Rover localization is presented as a major issue since dead
reckoning error often prevents the rover from properly recognizing when it has reached
the goal location. Figure 5.2 shows a planview plot of the vehicle trajectory for a run
with three rocks. The solid line represents the true rover trajectory and the dashed
line represents the deadreckoned trajectory. The rover scraped its hubs against rocks
B and C. According to JPL’s report, the results of this and other trial runs imply
that scraping against rocks introduce large heading errors.

Currently, path selection is achieved by a simple behavior control algorithm which
is reactive and does not take any excess knowledge-such as maps-into account. Thus,
our intent is to build a simulation-based route planning system that will enable
the rover to simulate various alternative path traversal behaviors and/or parameter
settings such as turn rate and sensor reading rate to estimate the optimal settings at
which the rover is likely to have least amount of deadreckoning error and, therefore,

most likely to succeed.

D81

9.2 Simulation-Based Rover Route Planning System

Figure 5.3 illustrates the basic components of our Simulation-Based Rover Route
Planning (SBRRP) system. Initially, the planner takes the goal location of the route
as input and selects a route plan for output. This selected plan is the input to the
Control Subsystem which performs a supervisory control of the process. The output
of the rover process is the actual sensory output of the rover. The sensory output
will include camera images, hazard detections and position information. Along with
the plan, a simulation log (the simulation data that was produced previously during
the plan evaluation process) of the chosen plan is provided as input to the Control
Subsystem. This can be used to serve as a reference model to track the state of
the execution in order to monitor its progress towards the goal. The monitoring
information can be used further to tune the system towards the goal (i.e. correct its
route or position estimation) or to generate a failure signal to the planner as soon as

it decides that the current route is unlikely to succeed.

5.2.1 Planner

The planner has two major modules:

1. The Plan Simulator simulates alternative traversal configurations for different
terrains. In terms of the rover configuration, two factors are varied: 1) unit
distance (the amount of distance traveled in between hazard detection) and 2)
unit angle (the number of degrees turned in between hazard detection). The
Path selection behavior algorithm is another possible factor to vary but is not
considered at this time. For the terrain, we also vary two factors: 1) rock
sizes and 2) rock frequency. Thus, the simulation is based on the physical and

empirical models of the rover and the terrain.

D82

Table 5.1. Power Usage for different subsystems

| Subsystem | Power Usage(W)]
Driving 8.28
Steering 6.70
Hazard Detection Scan | 7.33

e The Mars Rover Model includes a physical model which include specific

characteristics given by the JPL document: translation (max 0.67 cm/sec),
rotation speed, step climbing ability (max 19.5 cm), and specification for
the hazard detection sensors (range of view is about 120 deg. with 30 cm
max distance). In addition, it’s power usage is also documented and is
shown in table 5.1.

Since we are simulating in a 2 dimensional space, we can represent the
position of the rover with respect to a fixed global frame at time k as a

vector

z(k)
x(k) = | y(k) (5.1)
o(k)

where z(k) and y(k) describe the cartesian location and (k) represents

the heading measured counterclockwise from the positive x-axis.

The robot’s motion is controlled by the control input

_| Tk)
u(k) = [AB(k) J (5.2)
where T'(k) is the speed (unit distance) per time step and Af(k) is the

rotational value per time step.

The actual position at time k+1 is obtained by the state transition function

f,

D83

f(x(k),u(k)) = | y(k) + T(k)sind(k)

8(k) + AB(k)

[z(k) + T'(k)cosb (k) J
(5.3)

To model the complete state of the rover system, we must include the
power usage p(k) at time k and also keep track of the deadreckoned po-
sition. Let %(k) = (&(k), §(k), O(k)) represent the deadreckoned position
and heading at time k. Then G(k + 1) is obtained by the state transition

function f ,

) &(k) + (T(k) + ea(k))cosf(k)
fF&(E), u(k)) = | §(k) + (T(k) + ea(k))sind(k) (5.4)
0(k) + AB(k) + en(k)

ea(k) represents the position error and ey (k) represents the heading error
at time k sampled from triangular distributions presented in the following

text. Thus, the complete rover system state is represented by a vector

z(k)

y(k)

o(k)
r(k) = | Z(k) (5.5)

(k)

o(k)

| P(k) |
and

P(k + 1) = P(k) + p;(k) (5.6)

where ¢ represents one of the three subsytem functions: Driving, Steering
and Hazard Detection Scan. p;(k) represents the power usage of subsytem
function 4 occurring at k. The power usage values , as shown in table 5.1,

are not dependent on time and are constant throughout the simulation.

D84

Table 5.2. Error Distribution of 40 runs

| | Heading error(deg) | Position error(m) |
Min 0.2 0.22
Mode 8.0 0.69
Max 37.2 2.45

What is time dependent is the value of i since due to power constraint of

the rover only one of the three functions can occur at time k.

Empirical data gathered from JPL’s trial runs are used to model e4(k)
and e,(k). Also, hazard detection error has a failure rate of 1 in 1000
given that hazard frequency is 1/100. The error models are based on the
dead reckoning and heading error statistics gathered by JPL for 40 runs
on artificial Mars nominal terrain. The error statistics form a triangular

distribution given in table 5.2.

These errors represent cumulative errors gather at the end of each run.
The mode of the true distance traveled is 8.39 m and thus we can naively
scale this to form a new position error distribution values U,,,.r for each

unit distance traveled using the following equation:

Perror*Dgoal

Uerror = % (5.7)
Udise

Perror is the position error as shown in the above table. Dy is the total
distance between the start and goal locations in a given route planning
problem. Uy, is the unit distance selected for the simulation. Intuitively,
the numerator is the amount of total position error scaled to the current
route distance and the denominator is a rough estimate of the total number
of samplings (i.e. simulation time steps) likely to occur during the simu-
lation. And thus, the equation provides a rough estimate of the position

error for each unit distance traveled. Scaling the heading error distribution

D8s

Table 5.3. Scaled Sample Error Distribution

| | Heading error(deg) | Position error(m) |
Min 0.001 0.18879
Mode 0.0315 0.59213
Max 0.186 2.0999

is not as straightforward as scaling the position error distribution due to
the fact that it is not really possible to predict the total number of degrees
the rover will turn during the simulation of a route traversal. So, based on
the assumption that the rover is likely to make a turn for every simulation
step, we have arbitrarily scaled the heading errors down by %ii“t—‘.

Table 5.3 shows a scaled triangular error distribution for simulations whose

Ugist is 7.2 cm and Dy is 766.94 cm.

The Mars Terrain Model creates Mars analog terrains using a rock
size-frequency distribution developed by Moore [29]. Currently, JPL is
experimenting their Microrover by performing test runs on terrains which
has been created artificially by randomly placing rocks according to this
Moore [29] model . Moore’s model is based on data obtained from images
taken by Viking Lander 2. Since a similar rock density is expected for
the Microrover experiment, the same model can be used. The original
Moore’s model for rocks down to a diameter of 0.14 m is represented by
N =0.013D~%% where N is the cumulative frequency of rocks per square
meter with diameters of D and larger. This model predicts that about
18.8% of the landing site area is covered by rocks. However, the model
used by JPL so far in creating the actual test terrains is based on the modal
value of the surface rock cover over the whole planet, which is estimated
to be at 6%. The terrain created from this model is called nominal. A

computer simulation is under development at JPL in order to test terrains

D86

with rock frequencies ranging up to 19%. Thus, our simulated terrains
will also be nominal in terms of total rock cover percentage although the

sizes and frequency will vary.

Using the models of the rover and the Martian surface, we perform multiple
simulations of each route. In general, there are several ways to proceed in
the simulation. If a set of routes are given beforehand- as in the case of our
previous work in mission planning—one can divide each route into phases and
proceed the simulation in a breadth-ﬁrst manner (each level being one phase of
the route). This way, the planner will at least have some idea of the goodness
of each route, should the time limit the planner to make a decision before it has
performed a complete set of simulations. If, however, no pre-determined routes
are to be used during execution as in the case of the rover, then a natural
way is to proceed in a depth first manner. Another possible approach is to
divide the simulation artificially into several segments and proceeding breadth-
first, simulating different segments from different simulation trials. This would
involve significant overhead since we need to keep a record of all the states of
each trials in between each simulation. Thus, our approach here is to perform

a complete simulation, trial by trial.

To reduce the amount of computation, we can use the A* search method if
we can build a heuristic function which can estimate the cost of the remain-
ing route. Another possibility is the branch and bound method used in the
area of Operations Research. Due to uncertainties which exist in the models,
simulations must be performed multiple times using the available stochastic
information to éapture the overall effect and also to reduce the variance of the

outcome variables.

D387

CONTROL

PLANNER Log Reference | Mode Gwrp

Supervisor
Model
Plan Simulator /—
Goal Plan Evaluator
Location| pjan Selector Plan Rover
X Action Location
Plan Executioner Process

Plan Failure

Figure 5.3. Simulation-Based Rover Route Planning System

2. The Plan Evaluator/Selector evaluates the results of the simulations and
suggests a plan for execution. Currently, three elements are considered: 1)
closeness to the goal location; 2) the total time elapsed; 3) power usage. These

elements are combined into a single score using the following equation:

Score = Wy x dist + W, * time + W, * power (5.8)

where

dist = is the distance between the rover’s location and the goal location.

time = is the total virtual time elapsed between the start and end of the
simulation

power = is the total power usage of the rover

Wy, W, and W, represent weights attached to each factor so that they can be
adjusted appropriately to reflect the needs of the user. Since we want all of the

above to be minimum, the score should be as low as possible.

5.2.2 Experimental Design

Our SBP method’s experimental design approach to the rover problem is to vary

the terrain and the rover configuration. More specifically, we vary three factors: rock

D88

rock cover
6%

T 0 / \
d.;:z::/\) m./\
N VANANYVANYAN

Figure 5.4. Sampling Range and Distribution of Simulation Factors

distributions (both in terms of size and frequency), unit distance of travel and unit
angle of rotation. If the planning experiment is performed using the full factorial de-
sign approach, the number of combinations to simulate will be prohibitive. However,
optimization techniques such as response surfaces and metamodels can be used to
alleviate the problem. Response-surface methods usually involve a series of small ex-
periments utilizing full or fractional factorial designs to explore the response surface
and approximate the function of simulation. We can use this approximate function
to move to the area that is near optimal as soon as possible and then as the optimum
is approached, use some technique of local exploration to find the precise optimal
point.

There are three major factors to consider in creating the terrain: 1) rock sizes; 2)
rock frequencies; and 3) rock placements. Once a rock coverage and the lower limit
of the rock size D is set, the frequency is produced from the Moore’s model. For a
single simulation run, the rock sizes are then sampled randomly from the range D
upto a predetermined limit (23cm) according to the frequency given above. Once the
rover is on Mars, the map that is generated from photographs will be used to place
rocks that are large enough to be obstacles in their absolute locations. The remain-
ing terrain in between the large rocks can be simulated through the Moore’s model

during simulation. Later, we can use any additional information that is available

Dg&9

(distribution of rock sizes and frequency) of the landing site to design a non-uniform
sampling distribution. By using visual information of the landing site, we can build
rock distributions that are similar to the actual terrain characteristics. The place-
ment of these smaller (less than 23cm in diameter) rocks will be random. As time
permits, multiple simulations with different small rock placements will be performed.
On a higher level, the percentage of rock cover can be varied to be between 6% to
19% but it is fixed at 6% for now. Thus, a simulation environment is set by the tuple
(D, A, T) where:

D = [4.0,12.0] representing the unit distance of travel (in centime ters)

A = [3.0,7.0] representing the unit angle of rotation (in degrees)

T = is the terrain determined by (s, f,p) where s = [0.05,0.23] (in meters) is the
diameter of the rocks, f = 6 is the percentage of rock coverage and p is the placement
strategies of the rocks which is done randomly in the current implementation but
may be based on other probability distributions using available data. Since there are
infinite number of combinations of these factors, our approach is to sample D and A
at certain intervals while creating T by randomly selecting the values for s. Since f
and p are fixed in this prototype, we will refer to the terrain simply as T (s). Because
it is possible to determine f from observations of the surrounding terrain either by
satellite imagery or by local camera images, it is reasonable to assume that we can
fix f to be a certain value for a particular planning situation. It is also possible that
we can narrow down the range of s in a similar way.

For the simulation, we use discrete time step simulation with the following algo-

rithm (repeated for each route):

While (Goal is not reached) do
Sample sensor data

Follow route by executing action on rover

D90

Update rover state variables
Update current clock time by AT
End While

Until the rover’s state variables indicate it has reached the goal location, the
planner continues the above loop and continues on its route. Sampling sensor data
involves sensing the rocks on the terrain using the sensor model built from JPL’s
description. Depending on the size and location of a rock, the planner may also
invoke the hazard detection sensors-indicating that the rover will have to maneuver
around the obstacle. Smaller rocks (with diameter less than 23 cm) are ignored by
the hazard detection sensor but is likely to cause the dead-reckoning error to increase.
For the rover route planning problem, this is the distinguishable aspect of SBP which
is handled differently (or sometimes not at all) by other planning methods.

The effect is captured by incorporating a dead-reckoning error model into the
simulation which is modeled as a white process. A white process is a random process
where the distribution of the expected value of the members of the collection of
functions over all frequency components in the full range is uniform. This is an
idealized concept which does serve as a very useful approximation where noise is
wideband compared with the bandwidth of the system. Finally, the state variables
(location x,y) are updated accordingly using control dynamics of the rover along with

the clock.

5.3 _Prototype Environment

For the prototype, a graphics user interface to the planner has been developed by
our MOOSE (Multimodel Object-Oriented Specification Environment) group. Fig-
ure 5.5 shows the interface we have built and the routes traversed using our algorithm.
Through this interface, the user is able to define various parameter values for the ter-
rain, the rover, the experimental design, and the output analysis. A user can either

D91

Figure 5.5. Rover Route Planning Runs

set the parameters to certain values or select certain ranges in which parameter values
will be randomly sampled and used in the simulations.

The shown paths in figure 5.5 are 20 replicated simulations on a terrain where the
rock sizes are 10cm in diameter or smaller and the overall area of rock coverage is 6%
(i.e. 6% of surface area are covered by rocks). The start location is at (10,10) and the
goal location is at (600,500). The distance to the goal is 766cm. Since the distance of
the real runs tested in the Mars Rover experiment was 7.6m, our test distance is an
appropriate choice. The paths that are darker and end exactly at the goal location
are dead-reckoned paths (paths the rover thinks it is traversing in) and paths that

are lighter and stray away from the goal location are actual paths the rover traveled.

5.4 Planning Results

In the rover experiment, a test run was considered successful if the rover’s dead-
reckoned position estimate implied that it had reached the goal. Based on this def-

inition, all 20 of our rover route planning runs in figure 5.5 were successful at unit

D92

distance of 6.5cm. This is a good match to the rate of success of the real rover test
runs, which was 39 out of 40 with unit distance of 6.5cm. Figure 5.6 displays the
response surface graph of the average evaluation scores obtained from 20 replications
of each simulation environment (D, A,10). 10 implies that the terrain is made up
of rocks whose sizes are 10 cm in diameter or smaller. Thus, for such a terrain, we
can observe from figure 5.6 that the area of optimal configuration will be near the
area where unit distance is 7 cm and unit angle is 3 degrees. Figure 5.8 shows the
confidence interval half-widths at 95% of the mean evaluation scores produced in fig-
ure 5.6. The area where the confidence interval width is the smallest coincides with
the area of near optimal configuration in figure 5.6 which means the near optimal
configuration area is also quite stable.

Figures 5.7 and 5.9 are scores and confidence interval half-widths for (D, A, 20).
The overall shape of the response surface is somewhat similar to the one in figure 5.6.
However, there is a significant difference in the area where score is minimum. In
figure 5.7, the area of close to optimal configuration is when unit distance is set to
7.3 cm and unit angle is set to 3 deg whereas in figure 5.6, the optimal area is where
unit distance is near 3.6 cm and unit angle is near 4.8 deg.

As the difference of the optimal configuration point is significant depending on
the terrain, having the ability to search for the near optimal configuration given the
current terrain environment will be crucial to the overall success of the mission.

In this chapter, we were able to observe how simulation-based planning can play
a role in predicting near-optimal configurations for terrain traversal in a given envi-
ronment. This exhibits the potential for on-line adaptive planning. One can imagine
that, once on Mars, the rover can first gather information about the environment as
much as possible and fhen using this current, local information, the rover can per-

form simulation-based planning to figure out which configuration (unit distance and

D93

Response Surface of Mean Scores

L -]
£

Mean Evaluation Score
N

vl

10

Unit Angle(deg) 0 2
Unit Distance(cm)

Figure 5.6. Response Surface of Mean Evaluation Scores (Rock Size < 10 cm)

Response Surface of Mean Scores

o

Mean Evaluation Score
N

\/O

10

Unit Angle(deg) 0 2

Unit Distance(cm)

Figure 5.7. Response Surface of Mean Evaluation Scores (Rock Size < 20 cm)

D94

Confidence Interval Half-Widths

|

15000

g
8

5000

Confidence Interval Half-Width

&
© \/§ o

Unit Angle(deg) 0 4

Unit Distance(cm)

Figure 5.8. Response Surface of Confidence Interval Half-Width at 95% (RockSize <
10cm)

Confidence Level Half-Widths

15000
10000

5000

Confidence Interval Half-Width

&
@ \/§ 2

10
. 4
Unit Angle(deg) 0 2

Unit Distance(cm)

Figure 5.9. Response Surface of Confidence Interval Half-Width at 95% (RockSize <
20cm)

D95

angle, traversal algorithm etc.) is likely to produce the outcome that will be closest
to the goal.

In addition to unit distance, unit angle and terrain, which we have varied in the
experiment, we can also simulate other factors such as the time of day-to predict the

effects of light on the energy, for instance.

D96

CHAPTER 6
NONDETERMINISTIC ADVERSARIAL ROUTE PLANNING

6.1 Air Force Mis'sion Planning

Similar to the CGF mission planning problem discussed in chapter 4, the Air
Force Mission Planning is a good candidate for SBP since it is adversarial and also
nondeterministic. To illustrate, here is an example air combat scenario in Figure 6.1.

This figure defines a scenario with dynamically moving objects. The mission
of the blue force fighter aircraft is to pave a path for the bomber to disable the
factory. There are three radar locations, (R1,R2,R3), each with different effective
detection ranges. On the surface, the problem of guiding the blue force around the
radar coverage, and toward the factory, seems like a simple problem in computational
geometry. In actuality, this is the way in which most route planning operates. A rule
might be formed “To locate a path, avoid radar fields and storm fronts” to aid in the
decision making. Consider the following available knowledge at some point during

the mission:

1. Uncertain location and range: Radar locations R2 and R3 are permanent fix-
tures and have been identified by satellite imagery. However, R2 may have been
upgraded to have a wider range. Moreover, R1 may not exist. A land-based

scout report suggests that it may.

2. Uncertain enemy mission: Red force aircraft are known to fly a routine recon-
naissance route toward the north. Is the red force on a routine mission, and
therefore out of the way, or has the enemy indicated the blue force strength,

providing the red force with an intercept mission?

D97

Munitions Factory

g
PR
AN S

|
\ .ﬂ B

® AWACS

Figure 6.1. Air combat scenario with dynamics and uncertainty

3. Uncertain force strength: An AWACS monitoring plane has just identified a
blue force (as denoted just south of the AWACS) but it is unclear as to the
number and type of aircraft. The factory has four anti-aircraft (AA) guns but
the intelligence reports are not complete; the range and accuracy of the guns

is largely unknown.

4. Weather conditions: Weather stations report a storm front to the West, moving
East, but the cloud cover situation is unclear; only a fuzzy estimate can be made

of the height and severity of the storm.

These types of uncertainties may well be the rule rather than the exception.

As the example shows, large part of the mission is dependent on which particular
route or air corridor you will fly through and it basically becomes a route planning
problem with many uncertainties on the way. Of course, some higher-level expert
system can be used and should be used as a meta reasoning system on top of the
SBP planner to provide guidelines as to-given the current situation-what general

heuristics we are to use in generating alternative air corridors for simulation.

Executive 0
Experimental
Design
N
Trial 2
Replicator 1 Initialize For Route Ri, i €{l..n}
Envi Evaluator 3|
Replicator e AF Mission Route Simulator tore. Ofm
Random Seed > Rmcxidom *) ﬁb": A
set of scores
set of times
output data Analyzer 4
make stat calls for data analysis -Confidence
-Variance
- Mean ... etc.

Figure 6.2. Top Level Architecture of Air Force Route Planner

In this chapter, we present the design, implementation and some preliminary

results of the prototype built for the air force mission planning domain.

6.2 Planner Architecture

Figure 6.2 shows the specific top level architecture for the Air Force Route Plan-
ner. The generic Route Simulation Module in Figure 2.1 is now instantiated to the

Air Force (AF) Mission Route Simulator, which is described in the following sections.

6.2.1 Maultimodel of AF Mission Route Simulator

In this section, we describe the multimodel for the Air Force Route Simulator
which resides inside the Trial block. First, the class hierarchy of our Air Force
multimodel appears in figure 6.3. Assuming that a set of alternate routes and envi-
ronment data are given, the following models are simulated and evaluated for each
route R;. The simulation process is replicated and its output results are accumulated

and then analyzed by the Analyzer.

D99

World
Eval()
|
WIT l!o[dAc Ruldot S|AM Lx Tlgt Zones

E) E 0

Execute() Execute()

Figure 6.3. Class hierarchy of Air Force Model

Trial 2
Initialize Forevery Route Ri,i= 1 ton, un
— - AF Route Sirmutator set of scores,
seed set of times
e
AF Route Simulator
SAM X ot Zones
il
1 = true or 2 = true
Evaluation Score for Ri
PARAMETERS
1. mission failure
2. mission success

Figure 6.4. General Simulator Module

D100

Figure 6.4 shows a general layout of all the objects that are currently implemented
in the simulator module. We assume there are seven types of PHYSICAL objects:
BlueAC, RedAC, Radar, SAM, Wx, Tgt, Zones and one ABSTRACT object called
Eval. The class BlueAC stands for Blue Aircraft and RedAC similarly stands for
Red Aircraft. Radar represents a ground radar site. SAM represents a ground SAM
missile site. Wx represents the weather. Tgt represents the target that needs to
be destroyed. In the current prototype the target is the headquarters for the red
force. Zones represent the area of defense zone. For the zones, we assume that there
are a set of radars strategically located inside the zone such that when an enemy
aircraft (BlueAC) flies inside the zone, it is detected. Any number of each object
type may exist depending on the specific mission situation. If the user defines the
environment to have 3 radars then, by the nature of the object-oriented paradigm,
3 Radar instances of the Radar class are automatically created. Having multiple
weather objects is unimaginable but a weather object made up of other sub-weather
objects such as wind, cloud and sun is certainly plausible. During a typical simulation
loop, every object updates its local state and/or perform action(s) which in turn may
affect other objects in the following time slice. The last object to be called within a
simulation loop is Eval. We describe the role of each object models in more detail
below.

Eval

Figure 6.5 shows a functional block of Eval which contains the various check
functions that check the status for each object class. Notice that if there were n

objects of class Radar, then the Check Radar function will check all n radar objects.

1. Although it is not explicitly shown in the figure, Eval is responsible for main-

taining a consistent and aggregated “current state” of the world. In other words,

D10l

objects "
new state

[

Eval:Execute

current stat

Check Check Check Check Check
Radar BlueAC RedAC [SAM .

Target start next simulation loop
£0 up to Trial::Execute

Figure 6.5. Eval(Evaluation) model

using the notation defined in section 2.2.1, Eval is responsible for maintaining

Q(t).

2. Eval decides the outcome of interactions between objects. In a way, it plays the
role of God. Every time Eval is executed, it looks for certain condition of each
object such as Missile Fired or Engagement. If object O; has fired a missiled
targeting object Oy, for example, the outcome of the event (missed_target,
destroyed_target) is determined by Eval. Our reason for having Eval determine
such events is because we wanted to maintain symmetry and self containment
among objects. It is not symmetrical to have either any of the two objects
decide the outcome of an event that is outside of their control. Determining
the outcome can be as simple as sampling from a given probability distribution
or simulating a lower level model which would contain a physical model of the

missile.

3. Eval evaluates each situation for every time slice and maintains a score that
represents the goodness of the plan. The evaluation score is constantly affected
by events during the simulation. In the prototype, we have assigned arbitrary
values to each event; a positive(good) event has a positive value and a nega-

tive(bad) event has a negative value. The following explains our initial set of

D102

events which have already been implemented. We list the set of implemented

events in association with each object type that is interacting with the BlueAC.

RedAC

e NOKILL : neither the RedAC nor the BlueAC has been destroyed. The

score is unaffected by this event.

* RED KILLS BLUE : RedAC has destroyed BlueAC. The value here is set

the maximum negative value since it implies that the mission has failed.

® BLUE KILLS RED : BlueAC has destroyed RedAC. The value is positive
but is not set to the maximum value since it does not immediately imply

that the mission is a success.

° RED_AND_BLUE_KILL_EACH_OTHER : BlueAC and RedAC has de-
stroyed each other. The score is first increased by a positive value since a
RedAC was destroyed but is decreased by a larger negative value because

the mission has ended in a failure.

SAM

® NOKILL : Neither the SAM nor the BlueAC has destroyed each other.

The score is unaffected by this event.

e RED KILLS_BLUE : red SAM missile was fired and has destroyed BlueAC.

The score is decreased by the maximum amount as in the case of RedAC.

e BLUE_KILLS_RED : BlueAC has destroyed the red SAM missile site. The
score must be increased by a positive value but should not be increased
by the maximum amount since it does not immediately imply that the

mission is a success.

D103

e RED_AND_BLUE_KILL_EACH_.OTHER : BlueAC and red SAM has de-
stroyed each other. The score is first increased by a positive value since a
SAM was destroyed but is ultimately decreased by a larger negative value

because the mission is a failure.
Tgt

e TGT_DESTROYED : red Target was destroyed by the BlueAC which
implies the mission was a success. The maximum positive value is added

to the score to represent the attractiveness of this outcome.

Radar

e BLUE DETECTED.BY_RADAR : BlueAC has been detected by a radar.
A small amount of the score is decreased every time the BlueAC is de-
tected. Unlike previous events, which occur only once, this event can
reoccur for each time step as long as the condition holds true. The logic
behind this is that the longer the BlueAC is exposed to the radar, the
higher the danger is of being attacked and thus the score should reflect
this property. More accurate results will be obtained if the radar is mod-
eled at a lower level where other red aircrafts are contacted to intercept

and possibly destroy BlueAC.

Finally, when BlueAC has successfully destroyed the target, the remaining fuel
level is calculated and added to the score in order to reward alternatives that have
used less fuel. Thus, in the current prototype the evaluation function is based on
the common sense judgement where the remaining fuel level, the level of safety and
the level of success (in terms of destroying the target) is combined to represent the

goodness of a route plan. As better expert knowledge becomes available from an

D104

Eval
new state

BlueAC::Execute

] =true or 2 = true

returned to Bkl

Approach
Target

current state

PARAMETERS
1. mission failure

2. mission success

Figure 6.6. Blue Aircraft (BlueAC) object model

B .
lueAC:Approach Target dmte & 3= false

p——
PARAMETERS

boolean

.) 1. target in range

sion failure [2 missile detected

3. red destroyed or avoided

4. red detected

5. target destroyed

6. blue destroyed or disabled

7. missile destroyed or avoided

L 8. time left of mission

—

Missile et di d
Alent estpoye
Mode

2=true & 7= false

l 6 = true -> mission failure

Figure 6.7. Interdiction FSA for BlueAC

SME(Subject Matter Expert), we expect that finding a good evaluation function will
play a major role in making SBP a viable methodology in military planning.
BlueAC
The objects BlueAC and RedAC are Dynamic Objects (as defined in section 2.2.1).
The top level model of the BlueAC object is shown in Figure 6.6. In our prototype
we have uniformly named the main top level method of each class as Execute. At
the highest level of the BlueAC object, for an Interdiction mission, it is modeled as

an FSA with three phases: Approach Target, Return to Base and End Mission.

D105

BlueAC::Apporach Target > Traverse Route

1
xk) Update xk+1)

- $peed Location new location
- current location

- delta-t

- angle

- wind factor
(force, angle)

- fuel level

Figure 6.8. Traverse Route function for BlueAC::Approach Target

Figure 6.7 shows the refinement FSA for Approach Target phase appearing in
figure 6.6. In normal circumstances, BlueAC traverses the given route. However,
whenever an enefny aircraft or a missile is detected, it must switch into an alert mode.
Once the danger is no longer present, BlueAC can go back to the Traverse Route
phase. Finally, when the target is within range, the FSA transitions to the Destroy
Target phase. After the target or the BlueAC has been destroyed, the Approach
Target FSA exits with the appropriate condition. This exiting condition is used at
the higher level to transition to the appropriate next state in the FSA which is Return
to Base (Figure 6.6).

Going another level down from the Traverse Route phase, figure 6.8 illustrates the
functional block model for updating the location while traversing the route. It takes
as input, the aircraft’s speed, current location, angle, fuel level and wind factor.
Except for the wind information, all the other information are maintained in the
vector x(k) which represents the state of BlueAC at time k (current state). The
UpdateLoc function produces the next state x(k + 1). We can express the state

vector x(k) as follows :

D106

x(k) = g (6.1)
s

where z(k), y(k) and 6(k) describe the current location of the aircraft. s(k) denotes

the current speed and f(k) denotes the fuel level at time k. Currently, the speed is set

to a constant. It is certainly possible, however, to explore different constant speeds

or varying speeds during the simulation to experiment other possibilities. Based on

the current speed, we calculate the unit distance T(k) for At using

T'(k) = s(k) x At * scale_factor (6.2)

The term scale_factor is used to either scale down or up the simulation granularity

of the terrain grid. Finally, the fuel level f(k) is modeled by equation 6.3.

flk+At) = f(k) — (s(k) * At % scale_factor) x fuel_consumption_rate

—ws(k) * cos(|6(k) — wé(k)]|) (6.3)

where ws(k) is the wind speed and wl(k) is the direction of the wind at time k. The
fuel_consumption_rate refers to the amount of fuel that is consumed per basic unit
of distance(e.g. per mile or per kilometer). In addition to the current speed, the
wind can have an effect on the fuel consumption depending on the angular difference.
Based on this difference and the wind speed, the fuel consumption will either increase
or decrease. BlueAC’s fuel level is updated every At.

In the current prototype, only the Traverse Route and Destroy Target behavior
have been fully implemented. The RedAC Alert Mode can, however, be further
refined as another FSA as shown in figure 6.9. The Missile Alert Mode will also take
on a similar FSA model as in figure 6.9. However, if the FSA in figure 6.9 were to be

D107

BlueAC:Approach Target > RedAC Alert Mode

6 = true

Combat

r Ty
PARAMETERS
boolean

1. enough fire power
1 = false 2. enemy lost
& 3 false |4 = false or 5 = falsg 3. enemy destroyed
4. enough fuel
5. enough time
6. blue destroyed or disabled

enum
a. mission behavior
= {passive, aggressive)}

e J

Figure 6.9. Red Aircraft (RedAC) model for BlueAC object

further refined, it will have a different refinement model since different tactics and
physical models will apply in monitoring, combatting and evading a missile or an
aircraft.

The return trip of the BlueAC to the base is not currently implemented in the
prototype. However, this can easily be taken into account. The simplest way is to
add a function such as the one shown in figure 6.10 that calculates whether there’s
enough fuel for a return trip. And if so,< reward the alternative highly and if not,
penalize it severely. If the return flight is likely to involve significant risks and the
safe return of the BlueAC is of major concern, the return flight should be simulated
and scored in much the same way as it was done for the Approach Target Phase of
the mission.

The Red Aircraft model shown in figure 6.11 have a special mission. They are
assigned to certain defense zones where their duty is to defend their zones from
any intrusion by an enemy aircraft. When the models are set, the user describes
the starting state of RedAC: its location, fuel level, current speed and any zone

assignment. Once the simulation starts, the RedAC starts from its initial location

D108

Figure 6.10. Return to Base functional block for BlueAC

Eval

L

Return

Base

to

BlueAC:Execute > Return to Base

—_—

- base location
- fuel level

- blue’s current

e,

new state

rate of success

state

(location, strength)
- time constraint

next state
e

(PARAMETERS

1. Blue Detected
2. Zone Reached
3. Blue Dead
4. Red Dead

L6. End of Combat

5. Within Combat Range

./

RedAC::Execute

current state

3 =true or 4 = true

1 3 false

D109

\Mission Ended

Figure 6.11. RedAC(Red Aircraft) model

and flies to its assigned zone. After reaching the zone(s), it goes into a surveying
mode-flying back and forth following the zone from one end to another. If RedAC
is assigned to more than one zone, it is reasonable to assume that it is assigned to
consecutive zones. So, if it is assigned to zone 1 and 2, for example, it will first fly to
the northwest cofner of zone 1 and then once it has reached zone 1, it will fly towards
the northeast end of zone 2. When it has reached the east end of zone 2, it will turn
around and start a flight back towards the west and so on. |

While performing the survey mission, whenever a BlueAC crosses an assigned
zone, the assigned RedAC will go into an Intercept mode and pursue the BlueAC
and attempt to destroy it. Once the two aircrafts come within range, Combat may
occur. RedACs having other types of specialized missions should also be modeled
and simulated in the future.

The next two objects belong to the Static Objects group as defined in section 2.2.1,
since we are assuming both the missile and radar site are immobile. The SAM
missile has three ranges: Track range, Missile range and Arm range. The track range
represents a range where an aircraft can be detected and tracked. The missiles can
actually be guided towards the target in preparation for launch within the Missile
range. Finally, if an aircraft comes within Arm range we assume the SAM missiles
will be automatically launched to destroy the target. We have employed a generic
SAM missile site model here but a more specific and sophisticated model can be used
if necessary.

We model ground radar sites as a simple one level FSA as shown in figure 6.13.
When BlueAC is detected by a radar, a possible action by the radar station would
be to contact other RedACs to intercept and destroy the blue aircraft. Currently, we

capture this effect by having decrementing the score by a certain amount for every

D110

Eval
next state

c“m‘fl state "SAM::Execute

(4=true or 5 = true)

4 =true or 5 = true

PARAMETERS
boolean

1. target in tracking range
2. target in missile range
3. target in arm range

4. target destroyed

5. target out of range

Figure 6.12. Model of SAM missile site

time slice BlueAC is detected by a radar. Thus, the longer the BlueAC is exposed to
the enemy radar, the lower the score will be.

Finally, the weather object Wx is modeled as having the wind factor. The wind
has a constant speed and a constant direction.

The model presented here is by no means complete nor has it been validated by an
SME. Since building sophisticated and realistic models is not the issue in our current

research, simple yet sensible models were built to prove our SBP approach.

6.3 Demonstration Mission Type

Our demonstration air mission is interdiction. Interdiction mission is a typical air
mission where the purpose is to destroy, delay, or disrupt existing enemy surface forces
while they are far enough from friendly surface forces that detailed coordination of
aerospace and surface activities is not needed. The objective of interdiction entails
the execution of carefﬁlly conceived, comprehensive plan designed to isolate an area

and to stop all support from reaching the area of conflict.

D111

Eval

next state

—-
current state

Radar::Execute
1 = false

2 = false and 1 = true

I = true addk false

c 9
1= fﬂlse\\/a = false and 1 = false

3 =true

PARAMETERS
boolean

1. blue detected
2. order issued (cutoff, pursuit)

3. blue detected

J

Figure 6.13. Radar model

Eval

change of state

new state

Wx

Wind (Constant)

Figure 6.14. Weather model

D112

Therefore, the task of the attack aircraft can be defined as “hitting the tar-
get swiftly and accurately with whatever munitions are carried, and return to base
safely” [39]. To achieve this task, the enemy defense must be penetrated. However,
difficulties arise because methods of penetration can vary according to the strength
and sophistication of the enemy’s detection, reporting, command and control network,
an& how much intelligence is available about its capabilities. A balance between fuel
and munitions in determining the load to be carried is also important in mission
planning. Considering these uncertainties and constraints, selecting the best route is

a very difficult task.

6.4 An Air Interdiction Scenario

As one of the applications of the SBP, we have chosen a typical air interdiction
scenario, and developed its Simulation Based Planner (C++) and GUI (Tk/Tcl)
under our Multimodeling Object-Oriented Simulation Environment (MOOSE). In
order to show the usefulness of the SBP approach, consider an air interdiction scenario
in Figure 6.15. This Figure defines a scenario with dynamically moving objects. The
mission of the blue force aircraft is to destroy a red force munitions factory. There are
three Radars (R1, R2, R3) and two Surface-to-Air Missile (SAM) sites(S1, S2), each
with different effective detection ranges. Two red force aircrafts (A1, A2) are located
in air defense zones Zone2 and Zone3 respectively, while one red force aircraft (A3)
is located outside of the air defense zones. At a first glance, the problem of guiding
the blue force around the radar, SAM and air defense zone coverages, and toward the
factory seems like a simple problem in computational geometry. In fact, this is the
manner in which most route planning is done. A typical rule might be formed “To
locate a path, avoid radar and SAM fields, and avoid fighting against enemy fighters.”
However such a rule based reasoning becomes more onerous when uncertainty and

dynamics are present.

D113

To see what kind of uncertainty and dynamics are involved, consider the following

available information at some point during the mission.

e Uncertain location and range : Radar R and R2 have been identified as per-
manent fixtures, but an intelligence report suggests that B8 may have mobility.
All the ranges (target, missile, arm range) of SAM site SI is well known, but
only the arm range of S2 is known and it has been reported to have a better

guidance system including swift mobility making its location uncertain.

e Uncertain enemy mission : red force aircraft A7 and A2 are known to be on
a Combat Air Patrol (CAP) mission, since they are always detected around

zone2 and zone3d. But A3’s mission type is unknown.

For each simulation trial, the uncertainty of S2 is handled by first sampling a
random location for §2 within the boundaries of the circle drawn around S2 in fig-
ure 6.15. Taking this location as the center point of the SAM site, a boundary circle
is drawn representing the arm range of the SAM site. The uncertainty of the radar
R3is handled in a similar manner. The location is first determined by sampling the
point within the uncertainty circle drawn by the user. Using the sampled point as
the center point of the radar, a boundary circle is drawn representing the detection
range.

For the objects in our air force mission planning domain, we can categorize the

uncertainty into several types:

1. uncertainty of existence: the object may or may not even exist.

2. uncertainty of location: an area of uncertainty of the object’s location is avail-

able but it is not certain of the exact location of the object.

3. uncertainty of range: the exact detection range or firing range is not known.

D114

Nunitions Factory

R RSTE

Figure 6.15. A Typical Air Interdiction Scenario
4. uncertainty of mission: the exact mission type of an object is unknown.
5. uncertainty of fire power: the destruction capability of the object is uncertain.

For our current prototype, we have concentrated mainly on location and range un-

certainties.

6.5 Planning Results

Figure 6.16 shows two possible routes (Routel, Route2) under the environment
defined in figure 6.15. The goal of blue force aircraft is to destroy the red force muni-
tions factory while satisfying 3 constraints: time or fuel level, safety, and destruction
of the target. Given the possible routes, the role of the simulation-based planner is to

choose the best route minimizing time and fuel consumption, and maximizing safety

D115

and target destruction. In figure 6.16, Routel is more attractive than Route2 if we
value mission time above all others, but seems less safe since it is vulnerable to an
attack by red fighter A1. Route2 might be considered more safe and achieve higher
target destruction than Routel by avoiding the attack from fighter A1 and SAM site
S1. However, it will be detected by radar R2, increasing the probability of losing
blue force aircraft or damage to blue force aircraft. Moreover, there is a big chance
of being detected by radar R3 even though its location is uncertain. The table at
the lower left of figure 6.16 shows the result of the simulation. We display the mean
score and the confidence interval half width of each mean at a 90% confidence level.
As can be expected, Route2 is more successful since it avoids direct attacks from the
highly destructive enemy fighter and the SAM site (mean score of Route2: 69, mean
score of Routel: -54).

If we delete Route! and consider another route based on the result of the previous
situation, we have two routes that we want to analyze. Figure 6.17 illustrates these
two candidates. Route3 was chosen to avoid direct attack from A1, but for a short
time period it will be detected by R1. Routed also takes the blue aircraft into the
track range of S1, but not into its arm or missile range. Being detected in the track
range of 51 is not very dangerous since only tracking functions may be performed by
S1. Overall, we expect the success rate of route 3 to depend largely on the result of the
samplings for uncertainty factors: specifically, the location and guidance capability of
SAM S2and the mission type of A3. If the powerful guided system of SAM is sampled
close to this route, or A3 has an intercept capability, then the chance of success will
be very small. Otherwise, the chance of mission success will be very good. These
nondeterministic and stochastic characteristics are resolved by multiple simulations
using different samplings of the uncertainty factors. The confidence interval of the

mean score of Routef is wide in comparison to that of Route2 due to the reason

D116

| Nanitions Factory]

Figure 6.16. Two possible routes

D117

Figure 6.17. Deleting Routel and inserting Route3

previously discussed; however, the overall mean score is better than that of Route2
because of the small chance of being detected by S2 or intercepted by AS.

We can now delete Route2 and insert another route, Route{, which is carefully
chosen to minimize the amount of time that a blue force aircraft falls within the
detection ranges of R2 and R3 as in figure 6.18. The result of the SBP shows almost
the same mean score for Route8 and Route4 (Route3 : 110.36, Route/ : 103.08) with
Route8 being slightly better!. Intuitively, Route 4 seems like a better route since it
only involves radar sites whereas Route 3 has a SAM site S2, although its location
may be uncertain. With simulation-based planning, however, we discover that Route

4 1s a slightly better. But depending on our objective, we may select Routef as the

'The goal is to maximize the mean score for determining the better plan.

D118

Figure 6.18. Deleting Route2 and inserting Route4

best overall route based on its narrower confidence interval (Route/ : 1.3, Route$:
6.0).

Next, in order to reduce the total number of replications in the simulation, we
compare two different methods of output analysis. These two methods are discussed
in detail in Chapter 2. The first one, which we refer to as the “iterative” method,
attempts to quantify significant pairwise differences among the k means within a given
confidence interval . We call it “iterative” because of the fact that the algorithm
iterates-performing for every iteration, a set number of b replications and analyzing
data to see if there are any significant differences. Whenever a route is found who is

significantly worse than all the other routes, it is eliminated. The iteration continues

D119

until only two routes remain and a difference exists between the two of them. Note
that since we have 4 routes in our experiment, each confidence level for the pairwise
differences must be made at 1 — o/6 2. The second method, which we refer to as the
“non-iterative” method(referred to as “Selecting best of k systems” in section 2.2.3),is
a method that avoids making unnecessary number of replications to resolve what may
be an unimportant difference. When two alternatives are actually very close together,
in terms of their goodness, we might not care if we erroneously choose one system(the
one that may be slightly worse) over another(the one that is slightly better). Thus,
given a “correct selection” probability P* and the “indifference” amount d*, the
method calculates how many more replications are necessary in order to make a
selection—a selection where with the probability at least P*, the expected score of
the selected alternative will be no smaller than by a margin of d*. In the following
experiment, we have chosen P* = 0.95 and d* = 13. A smaller d* will produce more
accurate results but with many more replications.

In addition to the two routes that appear in figure 6.18, we add two more routes
are added to test how much the number of replications reduce and also if the identical
selection is made. The routes are shown in Figure 6.19 and are renumbered. Route
2 and Route 0 represent two alternatives that are very close together and is likely
to require many number of replications to quantify a significant difference between
them. As expected, Routes 0 and 2 do exhibit similar responses as shown in the
following plots. Figures 6.20 and 6.21 are results with just 3 routes: 0, 1 and 2.
Figure 6.20 shows the mean score change of the routes using the simple iterative
method. After the first 20 replications, the planner decides that route 1 can be
eliminated since its scores are in general significantly lower than the other two routes.

It then performs 120 replications for both routes 0 and 2 before it decides that there is

?Refer to section 2.2.3 for detailed explanation

D120

b

= o
=
A

e
e

ey

T et

Figure 6.19. Inserting two new routes

D121

Mean Score Change(iterative)

140

Mean Evaluation Score

700 20 40 60 80 100 120
Number of Replications Rt0 -, Rt1 —, Rt2 :

Figure 6.20. Plot of mean score changes of 3 routes using iterative method

significant pairwise difference in their means to make a selection. Using this method,
we perform in total 120+ 120+ 20 = 260 replications. With the non-iterative method,
although the method decides that 10 more (130) replications are needed to make a
decision on route 2, less number of replications are made in terms of the total number—
130+54+20 = 204. Note the weighted means calculated by the non-iterative method
which is used in making the final decision as to which of the two remaining routes
is the best one. In this particular scenario, both the iterative and the non-iterative
methods select route 0 as the best alternative.

Now, we add a 4th route, Route 3 which is the shortest but perhaps the most
dangerous route of the route. Figures 6.22 and 6.23 show the mean score changes for
these 4 routes. Route 1 and 3 are eliminated after 20 replications since the average
scores are significantly lower than routes 0 and 2. With another route added, the
mean score change plots are somewhat different than in the case where there were
only 3 routes. And this difference pushes the iterative method to continue replicating
60 more times (180 in total) for each of the two routes before it makes a decision.
Consequently, it chooses route 0 as the better route—a different selection than when

D122

Mean Score Change(non-iterative)
T T T

140

+ weighted nean

" s weightedfmean

Mean Evaluation Score

700 20 40 60 80 100 120 140
Number of Replications Rt0 -, Rt1 ~—, Rt2 :

Figure 6.21. Plot of mean score changes of 3 routes using non-iterative method

only 120 replications were performed. In the non-iterative method, it makes only 69
replications for route 0 and 21 replications for route 2 before it makes a selection. It
chooses route 2 to be the best route in this particular case. As discussed in chapter 2,
this can occur because the non-iterative method only ensures that it makes a correct
selection within a given probability P*. And since the indifference amount d* was
chosen to be 13, it basically decides that route 0 and 2 are indifferent and many
more replications is really not necessary. Overall, the iterative method performed
400 replications whereas the non-iterative method only did 130 replications.

To find out whether the mean scores of the two routes 0 and 2 reach some kind of
steady state or just continue to oscillate, we performed 500 replications. Figure 6.24
shows this result. As we can see in the graph, the two routes do reach a steady state

and route 0 does seem to have a higher average than route 2.

D123

Mean Score Change (iterative)

Mean Evaluation Score
»
o
T
s

20+ 4
ot ..
20} J
-40F J
[RRe
-60 N N A . N A) .
0 20 40 60 80 100 120 140 160 180

Number ot Replications Rt0 —, Rt1 — Rt2 :, Rt3 -.

Figure 6.22. Plot of mean score changes of 4 routes using iterative method

Mean Score Change (non-iterative)
140 T T T T T T T T

+ weighted mean(l)
+ weighted mean(Q

120

-

100

soh/ 4

601 b

20} b

Mean Evaluation Score
H
o
T
L

-20t+ E

—40F J

s s ; . L)
10 20 30 40 50 60 70 80 90
Number of Replications Rt0 -, Rt1 ——, Rt2 :, Rt3 —.

Figure 6.23. Plot of mean score changes of 4 routes using non-iterative method

D124

Mean Score Change (iterative)
140 T T Y T T

401 h

201 b

Mean Evaluation Score

40} 4

/

_gok L L . L

o] 100 200 300 400 500 600
Number of Replications Rt0 —, Rt1 —, Rt2 :, Rt3 -.

L

Figure 6.24. Plot of mean score changes of 4 routes for 500 replications

D125

CHAPTER 7
CONCLUSIONS

We have presented the method of simulation-based planning as a new approach
to route planning under uncertain and complex environments. Our claim is not that
SBP should completely replace all other forms of planning, but that this approach
be used in conjunction with already existing, higher level planning approaches. This
way, given a set of alternatives to consider, SBP is able to extend the evaluation hori-
zon in mainly three aspects: probabilistic uncertainty is handled through replicated
simulation of models rather than solving them analytically using probability theory;
the level of reasoning is extended to a finer level of granularity, producing plans that
are closer to the level of execution while discovering subtleties that may be missed
by a higher level planner; and finally, SBP breaks down the complexity of multiagent
adversarial planning by employing object-oriented multimodel simulation.

There are several advantages to using Simulation to predict the results of plan
execution. We list them here in addition to the ones that have been stated in sec-

tion 1.3.

1. Simulation provides a uniform method without resorting to adhoc solutions. In
simulation, each entity in the environment is simulated in a uniform and consis-
tent manner by using models that represent both the physical and behavioral
properties. Thus, simulating a plan is a natural consequence of simulating each
of the entities by itself without having to worry about the global state change
as a result of each entities action. Using object-oriented programming methods,

each object is simulated using its own model.

D126

9. Because there is no central reasoning node for the simulation but many individ-
ual simulation models for different entities, scalability is a natural consequence.
Extendibility is another advantage simulation provides. For example, the ef-
fects of adding a new type of entity will be clear, only the behavior models of

each entity must be updated to recognize and reason about this new entity.

3. Similar to how simulation is used for visualization, simulation can be easily
used to perform visual playback of how a plan was simulated to explain the
planner’s decision. This can be very useful for the military since much of the
military training is done through “after action review” —which is reviewing and

analyzing the actions that were performed during battle.

4. Once a plan is chosen for execution, the simulation data that was generated
during the planning process can be used to match with the current real world
state. This can be compared to a common technique used in adaptive control
theory where a reference model is compared with the actual performance data

in order to tune the controller to a desired state [1].

5. Once the simulation results have been produced, the data can be analyzed and
interpreted in several ways to choose the “best” plan. For instance, we can
choose the plan which has not only a good average score but also the minimum
variance to ensure that it is the safest plan possible. We may also decide to
choose a plan that has the most number of highest scores even though the
confidence interval width may be large in order to select a plan that has the
best potential in spite of risks involved. We can even decide to choose a plan
at random (given that the scores are above some threshold) which will produce
nondeterministic planning. This is particularly useful for mission planning-

opposing forces should not be able to predict your plan.

D127

A common drawback of simulation is that it can be quite time consuming. Be-
fore the advent of fast low-cost personal computers, few researchers would consider
simulation of a fairly extensive experimental design to be a possible candidate for
real-time mission planning. However, as the speed of low-cost computers increases,
the simulation-based planning technique is becoming more and more attractive. In
order to build SBP planners that can satisfy time constraints, we have presented var-
ious ways of reducing the simulation time in terms of output analysis, experimental
design and multimodeling. We have also presented a heuristic algorithm that records
the average cpu time of each route simulation, uses the data to predict time usage
and then designs the experiment accordingly to produce the result within the time
constraint.

We have also identified some problem areas where SBP will be most useful. It
is expected that for areas where there is little uncertainty involved or the level of
reasoning required is only at a higher level, SBP is not likely to do any better. Many
factors affect the success of an SBP planner and we briefly mention some of them
here. As with any simulation, SBP will be only as good as the models that we build
to represent the world that we are planning in. In most cases, building valid models
is not a straightforward task. Validating that models indeed accurately represent the
world is an issue that we have not addressed in this thesis. Building good evaluation
functions that correctly represents the need of the user is also an important aspect
and is still somewhat of a trial and error process. All these and many other factors
must be carefully researched and some guidelines must be developed in order to

ensure that a user will build a useful planning system.

D128

CHAPTER 8
FUTURE WORK

The main focus of our work was in building a framework for SBP. There are many
areas that we have not addressed in much depth and we discuss them here as our
future work.

Validation of simulation models-making sure that the models we build appropri-
ately represents the actual object—is an important aspect that we must address. A
common approach is using sensitivity analysise or an inspection by an expert. An
interesting work related to this issue is validating and checking consistencies of a
higher rule-based systems. Using the predicted outcome of an existing higher rule-
based systems and the prediction of an SBP system (perhaps at a lower level of
detail), we can compare the two predictions. Based on the comparison, we can val-
idate one system against another and find any inconsistencies, subtleties that may
have been missed by the higher level system. Taking it another step further, we may
modify and improve the higher level system using the information obtained from the
comparisons. Currently, research is underway in our simulation group that focuses
on studying effective consistency measures which will rectify differences in rules pro-
duced empirically (through knowledge acquisition) and rules generated automatically
from multiple low-level simulations.

More detailed, sophisticated models should be built to obtain better results in
terms of answer quality and also test the degree of cpu time consumption in respect
to the model’s complexity. An immediate future work would be to extend the imple-

mentation of the Air Force models to include all the levels of abstraction as shown

D129

in chapter 6. Larger number of objects should also be simulated to further study the
scalability and the rate change of time consumption.

Extending the multimodeling paradigm to enable model execution at any level of
abstraction is also currently underway and SBP can greatly benefit from the success
of this work since it will allow reduction of model execution time. Possibilities exist
for future work in finding other ways of meeting real-time constraints: a hybrid ap-
proach of using quantitative and qualitative (fuzzy) simulation, developing additional
heuristics to aid in optimizing the simulation process are some ideas that we plan to
research in the future.

Finally, to further extend the study of the SBP methodology, additional experi-
ments in other application areas should be performed. Also, building and comparing
two planning systems, one built using the SBP approach and one built using another

planning approach, should prove to be useful in further improving the SBP approach.

D130

REFERENCES

[1] P. J. Antsaklis and K. M. Passino. An Introduction to Intelligent and Au-
tonomous Control. Kluwer Academic Publishers, Norwell, MA, 1993.

[2] J. Barraquand, B. Langlois, and J. Latombe. Numerical Potential Field Tech-
niques for Robot Path Planning. IEEE Transactions on Systems, Man, and
Cybernetics, 22(2):224-241, 1992.

(3] T. Basar. Dynamic Noncooperative Game Theory . Academic Press, San Diego,
CA, 1995.

[4] G. Booch. Object Oriented Design with Applications. Benjamin Cummings,
Redwood City, CA, 1991.

[5] R. A. Brooks. A robot layered control system for a mobile robot. JEEE Journal
of Robotics and Automation, 2:14 — 23, 1986.

[6] M. Czigler, S. Downes-Martin, and D. Panagos. Fast Futures Contingency Sim-
ulation: A “What If” Tool for Exploring Alternative Plans. In Proceedings of
the 1994 SCS Simulation MultiConference, San Diego, CA, 1994.

[7] D.D. Dankel and A. J. Gonzalez. The Engineering of Knowledge-Based Systems.
Prentice Hall, Englewood Cliffs, NJ, 1993.

[8] P. K. Davis. An Introduction to Variable-Resolution Modeling and Cross-
Resolution Model Connection. Technical report, RAND, Santa Monica, CA,
1993.

[9] T. L. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson. Planning With
De(::adlines in Stochastic Domains. In Proceedings of the AAAI-93, Washington,
DC, 1993.

[10] T. L. Dean and M. P. Wellman. Planning and Control. Morgan Kaufmann,
1991.

[11] M. A. H. Dempster, J. K. Lenstra, and A. H. G. Rinnooy Kan. Deterministic
and Stochastic Scheduling. Reidel, Dordrecht, 1982.

[12] Department of the Army. The Tank and Mechanized Infantry Battalion Task
Force, FM 71-2. Department of the Army, 1987.

[13] R. E. Fikes, P. E. Hart, and N. J. Nilsson. Learning and Executing Generalized
Robot Plans. Aritificial Intelligence, 3:251-288, 1972.

(14] R. E. Fikes, P. E. Hart, and N. J. Nilsson. Some new directions in robot problem
solving. In Machine Intelligence 7. Edinburgh University Press, 1972.

D131

[15] P. A. Fishwick. Heterogeneous Decomposition and Coupling for Combined Mod-
eling. In 1991 Winter Simulation Conference, pages 1199 — 1208, Phoenix, AZ,
December 1991.

[16] P. A. Fishwick. An Integrated Approach to System Modelling using a Synthesis
of Artificial Intelligence, Software Engineering and Simulation Methodologies.
ACM Transactions on Modeling and Computer Simulation, 2(4):307 - 330, 1992.

[17] P. A. Fishwick. Simulation Model Design and Ezecution: Building Digital
Worlds. Prentice-Hall, 1995.

[18] P. A. Fishwick and B. P. Zeigler. A Multimodel Methodology for Qualitative
Model Engineering. ACM Transactions on Modeling and Computer Simulation,
1(2):52 - 81, 1992.

[19] S. French. Sequencing and Scheduling: An Introduction to the Mathematics of
Jop-Shop. Ellis Horwood Limited, 1982.

[20] D. Harel. On Visual Formalisms. Communications of the ACM, 31(5):514 - 530,
May 1988.

[21] D. Harel. Biting the Silver Bullet: Toward a Brighter Future for System Devel-
opment. IEEE Computer, 25(1):8 — 20, January 1992.

[22] D. Hille, M. R. Hieb, and G. Tecuci. CAPTAIN: Building Agents that Plan and
Learn. In Proceedings of the Fourth Conference on Computer Generated Forces
and Behavioral Representation, pages 411-422, Orlando, FL., 1994.

[23] L. P. Kaelbling. An architecture for intelligent reactive systems. In Reasoning
About Actions and Plans, pages 395 — 410. Morgan Kaufmann, Los Altos, CA,
1987.

[24] C. R. Karr, R. W. Franceschini, K. R. S. Perumalla, and M. D. Petty. Integrating
Aggregate and Vehicle Level Simulations. In Proceedings of the Third Conference

on Computer Generated Forces and Behavioral Representation, pages 231-239,
Orlando, FL., 1993.

[25] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill,
1991.

[26] J. J. Lee, W. D. Norris, and P. A. Fishwick. An Object-Oriented Multimodel-
ing Design for Integrating Simulation and Planning Tasks. Journal of Systems
Engineering, 3:220-235, 1993.

[27) R. D. Luce and H. Raiffa. Games and Decisions. John Wiley and Sons, New
York, NY, 1957.

[28] L. Matthies, E. Gat, R. Harrison, B. Wilcox, Volpe R., and T. Litwin. Mars
microrover navigation: Performance evaluation and enhancement. Technical re-
port, Jet Propulsion Laboratory, Pasadena, CA, 1995. To appear in Autonomous
Robots Journal.

[29] H. J. Moore and B. M. Jakosky. Viking Landing Sites, Remote-Sensing Ob-
servations, and Physical Properties of Martian Surface Materials. International
Journal of Solar System Studies, 81:164-184, 1989.

D132

[30] H. Praehofer. Theoretic Foundations for Combined Discrete Continuous System
Simulation. PhD thesis, University Linz, Austria, 1991.

[31] P. Rogers and R. J. Gordon. Simulation for Real-Time Decision Making in
Manufacturing Systems. In 1993 Winter Simulation Conference, pages 866-874,
Los Angeles, CA, December 1993.

[32] D. W. Rolston. Principles of Artificial Intelligence and Expert Systems Devel-
opment. McGraw-Hill, Inc., 1988.

[33] J. Rumbaugh, M. Blaha, W. Premerlani, E. Frederick, and W Lorenson. Object-
Oriented Modeling and Design. Prentice Hall, 1991.

[34] S. J. Russell and P. Norvig. Artificial Intelligence A Modern Approach. Prentice-
Hall, 1995.

[35) M. Salisbury and H. Tallis. Automated Planning and Replanning for Battlefield
Simulation. In Proceedings of the Third Conference on Computer Generated
Forces and Behavioral Representation, pages 243-254, Orlando, FL., 1993.

[36] S. M. Sanchez. A Robust Design Tutorial. In 1994 Winter Simulation Confer-
ence, pages 106-113, Lake Buena Vista, FL, December 1994.

[37) M. Schoppers. Universal Plans for Reactive Robots in Unpredictable Domains.
In Proceedings of the 10th International Joint Conference on Artificial Intelli-
gence, pages 1039-1046, Milan, Italy, 1987.

[38] R. Shannon. Systems Simulation: The Art and Science. Prentice Hall, 1975.

[39] M. Spick. An Illustrated Guide to Moden Attack Aircraft. Prentice Hall Press,
1987.

[40] A. Thesen and L. E. Travis. Simulation Model for Decision Making. West
Publishing Co., 1992.

[41] M. P. Wellman. Formulation of Tradeoffs in Planning Under Uncertainty. Pit-
man, London, 1990.

[42] M. P. Wellman, M. Ford, and K. Larson. Path Planning under Time-Dependent
Uncertainty. In Proceedings of the 11th Conference on Uncertainty in Artificial
Intelligence, Montreal, Canada, August 1995.

[43] S. D. Wu and R. A. Wysk. An Application of Discrete-Event Simulation to On-
Line Control and Scheduling in Flexible Manufacturing. Internation Journal of
Production Research, 27:1603-1623, 1989.

[44] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338-353, June 1965.
[45] L. A. Zadeh. Fuzzy logic. IEEE Computer, pages 83 — 93, April 1988.

[46] B. P. Zeigler. Object Oriented Simulation with Hierarchical, Modular Models:
Intelligent Agents and Endomorphic Systems. Academic Press, 1990.

D133

BIOGRAPHICAL SKETCH

Jin Joo Lee received the B.S. degree in computer science from Ewha Womans
University, Korea in 1988 and the M.S. degree in computer science from Brown
University in 1991. After receiving the M.S. degree, she was a research engineer
at Human Computers Inc., Korea until 1992. She entered the Ph.D. program in
computer science at University of Florida in the spring of 1992 and plans to graduate
in August of 1996. Her research interests are in simulation modeling, AI planning

and intelligent control.

¢U.S. GOVERNMENT PRINTING OFFiCE: 1998-610-130-61102

D134

